The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 4121 –
4140 of
9351
In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem( P ε ) ℒ ε u = f ( u ) in IR 3 , u > 0 in IR 3 , u ∈ H 1 ( IR 3 ) , whereε is a small positive parameter, f : ℝ → ℝ is a continuous function,ℒ ε is a nonlocal operator defined byℒ ε u = M 1 ε ∫ IR 3 | ∇ u | 2 + 1 ε 3 ∫ IR 3 V ( x ) u 2 [ − ε 2 Δ u + V ( x ) u ] ,M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.
We compute the global multiplicity of a 1-dimensional foliation along an integral curve in projective spaces. We give a bound in the way of Poincaré problem for a complete intersection curves. In the projective plane, this bound give us a bound of the degree of non irreducible integral curves in function of the degree of the foliation.
We prove the existence of infinitely many geometrically distinct homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems.
We study the existence and multiplicity of positive solutions of the nonlinear equation u''(x) + λh(x)f(u(x)) = 0 subject to nonlinear boundary conditions. The method of upper and lower solutions and degree theory arguments are used.
We study the existence and multiplicity of positive solutions of the nonlinear fourth order problem
⎧ in (0,1),
⎨
⎩u(0) = a ≥ 0, u’(0) = a’ ≥ 0, u(1) = b ≥ 0, u(1) = -b’ ≤ 0
The methods employed are upper and lower solutions and degree theory arguments.
We study the existence of positive solutions to second order nonlinear differential equations with Neumann boundary conditions. The proof relies on a fixed point theorem in cones, and the positivity of Green's function plays a crucial role in our study.
We prove the existence of at least three solutions to the following fractional boundary value problem:
⎧ , a.e. t ∈ [0, T],
⎨
⎩ u (0) = u (T) = 0,
where and are the left and right Riemann-Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446-7454].
Currently displaying 4121 –
4140 of
9351