Displaying 401 – 420 of 809

Showing per page

Existence of mild solutions on infinite intervals to first order initial value problems for a class of differential inclusions in banach spaces

Mouffak Benchohra (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we investigate the existence of mild solutions on an unbounded real interval to first order initial value problems for a class of differential inclusions in Banach spaces. We shall make use of a theorem of Ma, which is an extension to multivalued maps on locally convex topological spaces of Schaefer's theorem.

Existence of multiple positive solutions of n th -order m -point boundary value problems

Sihua Liang, Jihui Zhang (2010)

Mathematica Bohemica

The paper deals with the existence of multiple positive solutions for the boundary value problem ( ϕ ( p ( t ) u ( n - 1 ) ) ( t ) ) ' + a ( t ) f ( t , u ( t ) , u ' ( t ) , ... , u ( n - 2 ) ( t ) ) = 0 , 0 < t < 1 , u ( i ) ( 0 ) = 0 , i = 0 , 1 , ... , n - 3 , u ( n - 2 ) ( 0 ) = i = 1 m - 2 α i u ( n - 2 ) ( ξ i ) , u ( n - 1 ) ( 1 ) = 0 , where ϕ : is an increasing homeomorphism and a positive homomorphism with ϕ ( 0 ) = 0 . Using a fixed-point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple positive solutions to the above boundary value problem.

Existence of multiple solutions for some functional boundary value problems

Staněk, Svatoslav (1992)

Archivum Mathematicum

Let X be the Banach space of C 0 -functions on 0 , 1 with the sup norm and α , β X R be continuous increasing functionals, α ( 0 ) = β ( 0 ) = 0 . This paper deals with the functional differential equation (1) x ' ' ' ( t ) = Q [ x , x ' , x ' ' ( t ) ] ( t ) , where Q : X 2 × R X is locally bounded continuous operator. Some theorems about the existence of two different solutions of (1) satisfying the functional boundary conditions α ( x ) = 0 = β ( x ' ) , x ' ' ( 1 ) - x ' ' ( 0 ) = 0 are given. The method of proof makes use of Schauder linearizatin technique and the Schauder fixed point theorem. The results are modified for 2nd order functional...

Existence of nonnegative periodic solutions in neutral integro-differential equations with functional delay

Imene Soulahia, Abdelouaheb Ardjouni, Ahcene Djoudi (2015)

Commentationes Mathematicae Universitatis Carolinae

The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay x ' ( t ) = - t - τ ( t ) t a ( t , s ) g ( x ( s ) ) d s + d d t Q ( t , x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for τ , g , a , Q and G to show that this sum of mappings fits into the framework of a modification of Krasnoselskii’s...

Existence of nonoscillatory and oscillatory solutions of neutral differential equations with positive and negative coefficients

John R. Graef, Bo Yang, Bing Gen Zhang (1999)

Mathematica Bohemica

In this paper, we study the existence of oscillatory and nonoscillatory solutions of neutral differential equations of the form x ( t ) - c x ( t - r ) P ( t ) x ( t - θ ) - Q ( t ) x ( t - δ ) =0 where c > 0 , r > 0 , θ > δ 0 are constants, and P , Q C ( + , + ) . We obtain some sufficient and some necessary conditions for the existence of bounded and unbounded positive solutions, as well as some sufficient conditions for the existence of bounded and unbounded oscillatory solutions.

Currently displaying 401 – 420 of 809