Displaying 421 – 440 of 809

Showing per page

Existence of nonzero nonnegative solutions of semilinear equations at resonance

Michal Fečkan (1998)

Commentationes Mathematicae Universitatis Carolinae

The existence of nonzero nonnegative solutions are established for semilinear equations at resonance with the zero solution and possessing at most linear growth. Applications are given to nonlinear boundary value problems of ordinary differential equations.

Existence of nonzero solutions for a class of damped vibration problems with impulsive effects

Liang Bai, Binxiang Dai (2014)

Applications of Mathematics

In this paper, a class of damped vibration problems with impulsive effects is considered. An existence result is obtained by using the variational method and the critical point theorem due to Brezis and Nirenberg. The obtained result is also valid and new for the corresponding second-order impulsive Hamiltonian system. Finally, an example is presented to illustrate the feasibility and effectiveness of the result.

Existence of one-signed solutions of nonlinear four-point boundary value problems

Ruyun Ma, Ruipeng Chen (2012)

Czechoslovak Mathematical Journal

In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems - u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) and u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) , where ε ( 0 , 1 / 2 ) , M ( 0 , ) is a constant and r > 0 is a parameter, g C ( [ 0 , 1 ] , ( 0 , + ) ) , f C ( , ) with s f ( s ) > 0 for s 0 . The proof of the main results is based upon bifurcation techniques.

Existence of periodic solutions for first-order totally nonlinear neutral differential equations with variable delay

Abdelouaheb Ardjouni, Ahcène Djoudi (2014)

Commentationes Mathematicae Universitatis Carolinae

We use a modification of Krasnoselskii’s fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9 (2002), 181–190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay x ' ( t ) = - a ( t ) h ( x ( t ) ) + c ( t ) x ' ( t - g ( t ) ) Q ' ( x ( t - g ( t ) ) ) + G ( t , x ( t ) , x ( t - g ( t ) ) ) , has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits...

Currently displaying 421 – 440 of 809