Existence of non-oscillatory solutions for a higher-order nonlinear neutral difference equation.
The existence of nonzero nonnegative solutions are established for semilinear equations at resonance with the zero solution and possessing at most linear growth. Applications are given to nonlinear boundary value problems of ordinary differential equations.
In this paper, a class of damped vibration problems with impulsive effects is considered. An existence result is obtained by using the variational method and the critical point theorem due to Brezis and Nirenberg. The obtained result is also valid and new for the corresponding second-order impulsive Hamiltonian system. Finally, an example is presented to illustrate the feasibility and effectiveness of the result.
In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems and where , is a constant and is a parameter, , with for . The proof of the main results is based upon bifurcation techniques.
For a certain class of functional differential equations with perturbations conditions are given such that there exist solutions which converge to solutions of the equations without perturbation.
We use a modification of Krasnoselskii’s fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9 (2002), 181–190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits...
We study the existence of periodic solutions for Liénard-type p-Laplacian systems with variable coefficients by means of the topological degree theory. We present sufficient conditions for the existence of periodic solutions, improving some known results.