Precise asymptotic behavior of solutions to damped simple pendulum equations.
We consider preservation of exponential stability for the scalar nonoscillatory linear equation with several delays under the addition of new terms and a delay perturbation. We assume that the original equation has a positive fundamental function; our method is based on Bohl-Perron type theorems. Explicit stability conditions are obtained.
Sufficient conditions are given which guarantee that the linear transformation converting a given linear Hamiltonian system into another system of the same form transforms principal (antiprincipal) solutions into principal (antiprincipal) solutions.
In questa conferenza descrivo alcuni recenti sviluppi relativi al problema dell'unicità per l'equazione differenziale ordinaria e per l'equazione di continuità per campi vettoriali debolmente differenziabili. Descrivo infine un'applicazione di questi risultati a un sistema di leggi di conservazione.
Dans un exposé précédent [1], nous avons justifié l’introduction de l’équation de Szegö cubique comme cas modèle d’équation de type Schrödinger sans dispersion. Ce cas modèle s’est révélé être intéressant sous divers aspects [2]. Dans cet exposé, nous nous attacherons à montrer comment la complète intégrabilité de l’équation de Szegö cubique permet de résoudre un problème spectral inverse pour les opérateurs de Hankel.
Abstract. Applying the topological transversality method of Granas and the a priori bounds technique, we prove some existence theorems for diflerential inclusions of the form x" ∈ F(t, x, x'), x ∈ ℬ, where F is a Carathéodory multifunction with convex, compact values. No growth condition will be imposed on F.