Displaying 581 – 600 of 809

Showing per page

Existence of solutions of impulsive boundary value problems for singular fractional differential systems

Yuji Liu (2017)

Mathematica Bohemica

A class of impulsive boundary value problems of fractional differential systems is studied. Banach spaces are constructed and nonlinear operators defined on these Banach spaces. Sufficient conditions are given for the existence of solutions of this class of impulsive boundary value problems for singular fractional differential systems in which odd homeomorphism operators (Definition 2.6) are involved. Main results are Theorem 4.1 and Corollary 4.2. The analysis relies on a well known fixed point...

Existence of solutions of perturbed O.D.E.'s in Banach spaces

Giovanni Emmanuele (1991)

Commentationes Mathematicae Universitatis Carolinae

We consider a perturbed Cauchy problem like the following (PCP) x ' = A ( t , x ) + B ( t , x ) x ( 0 ) = x 0 and we present two results showing that (PCP) has a solution. In some cases, our theorems are more general than the previous ones obtained by other authors (see [4], [8], [9], [11], [13], [17], [18]).

Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals

Ireneusz Kubiaczyk, Aneta Sikorska-Nowak (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In the paper, we prove the existence of solutions and Carathéodory’s type solutions of the dynamic Cauchy problem x Δ ( t ) = f ( t , x ( t ) ) , t ∈ T, x(0) = x₀, where T denotes an unbounded time scale (a nonempty closed subset of R and such that there exists a sequence (xₙ) in T and xₙ → ∞) and f is continuous or satisfies Carathéodory’s conditions and some conditions expressed in terms of measures of noncompactness. The Sadovskii fixed point theorem and Ambrosetti’s lemma are used to prove the main result. The results presented...

Currently displaying 581 – 600 of 809