Existence results for implicit differential equations
This paper presents several sufficient conditions for the existence of at least one classical solution to impulsive fractional differential equations with a -Laplacian and Dirichlet boundary conditions. Our technical approach is based on variational methods. Some recent results are extended and improved. Moreover, a concrete example of an application is presented.
In this paper, we introduce a new concept of mild solution of some class of semilinear fractional differential inclusions of order 0 < α < 1. Also we establish an existence result when the multivalued function has convex values. The result is obtained upon the nonlinear alternative of Leray-Schauder type.
This note is concerned with the existence of mild solutions defined on a compact real interval for first and second order semilinear functional differential inclusions.
This paper studies a new class of nonlocal boundary value problems of nonlinear differential equations and inclusions of fractional order with fractional integral boundary conditions. Some new existence results are obtained by using standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also discussed.
In this paper, we study a new class of three-point boundary value problems of nonlinear second-order q-difference inclusions. Our problems contain different numbers of q in derivatives and integrals. By using fixed point theorems, some new existence results are obtained in the cases when the right-hand side has convex as well as noncovex values.