Displaying 1741 – 1760 of 9312

Showing per page

Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces

Abada Nadjat, Benchohra Mouffak, Hammouche Hadda, Ouahab Abdelghani (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we use the extrapolation method combined with a recent nonlinear alternative of Leray-Schauder type for multivalued admissible contractions in Fréchet spaces to study the existence of a mild solution for a class of first order semilinear impulsive functional differential inclusions with finite delay, and with operator of nondense domain in original space.

Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function

Vijayakumar S. Muni, Raju K. George (2018)

Kybernetika

In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant)...

Controllability of linear impulsive systems – an eigenvalue approach

Vijayakumar S. Muni, Raju K. George (2020)

Kybernetika

This article considers a class of finite-dimensional linear impulsive time-varying systems for which various sufficient and necessary algebraic criteria for complete controllability, including matrix rank conditions are established. The obtained controllability results are further synthesised for the time-invariant case, and under some special conditions on the system parameters, we obtain a Popov-Belevitch-Hautus (PBH)-type rank condition which employs eigenvalues of the system matrix for the investigation...

Controllability of nonlinear implicit fractional integrodifferential systems

Krishnan Balachandran, Shanmugam Divya (2014)

International Journal of Applied Mathematics and Computer Science

In this paper, we study the controllability of nonlinear fractional integrodifferential systems with implicit fractional derivative. Sufficient conditions for controllability results are obtained through the notion of the measure of noncompactness of a set and Darbo's fixed point theorem. Examples are included to verify the result.

Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces

Mouffak Benchohra, Lech Górniewicz, Sotiris K. Ntouyas (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we shall establish sufficient conditions for the controllability on semi-infinite intervals for first and second order functional differential inclusions in Banach spaces. We shall rely on a fixed point theorem due to Ma, which is an extension on locally convex topological spaces, of Schaefer's theorem. Moreover, by using the fixed point index arguments the implicit case is treated.

Controllability theorem for nonlinear dynamical systems

Michał Kisielewicz (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Some sufficient conditions for controllability of nonlinear systems described by differential equation ẋ = f(t,x(t),u(t)) are given.

Controlled functional differential equations : approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2009)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m -input, m -output, minimum-phase systems with sign-definite “high-frequency gain”. The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded...

Controlled functional differential equations: approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2008)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m-input, m-output, minimum-phase systems with sign-definite “high-frequency gain". The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded with...

Currently displaying 1741 – 1760 of 9312