The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 141 –
160 of
358
The aim of the paper is to give some preliminary information concerning a class of nonlinear differential equations often used in physical chemistry and biology. Such systems are often very large and it is well known that where studying properties of such systems difficulties rapidly increase with their dimension. One way how to get over the difficulties is to use special forms of such systems.
The paper gives the answer to the question of the number and qualitative character of stationary points of an autonomous detailed balanced kinetical system.
Theoretical framework for linear stability of an anomalous sub-diffusive
activator-inhibitor system is set. Generalized Turing instability conditions are found to depend on
anomaly exponents of various species. In addition to monotonous instability, known from
normal diffusion, in an anomalous system oscillatory modes emerge. For equal anomaly
exponents for both species the type of unstable modes is determined by the ratio of the reactants'
diffusion coefficients. When the ratio exceeds its normal...
This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which...
Contact behavior plays an important role in influenza transmission. In the progression of
influenza spread, human population reduces mobility to decrease infection risks. In this
paper, a mathematical model is proposed to include adaptive mobility. It is shown that the
mobility response does not affect the basic reproduction number that characterizes the
invasion threshold, but reduces dramatically infection peaks, or removes the peaks.
Numerical...
Tumour immunotherapy is aimed at the stimulation of the otherwise inactive immune system to remove, or at least to restrict, the growth of the original tumour and its metastases. The tumour-immune system interactions involve the stimulation of the immune response by tumour antigens, but also the tumour induced death of lymphocytes. A system of two non-linear ordinary differential equations was used to describe the dynamic process of interaction between the immune system and the tumour. Three different...
We present two simple models describing relations between heterotrophic and autotrophic organisms in the land and water environments. The models are based on the Dawidowicz & Zalasiński models but we assume the boundedness of the oxygen resources. We perform a basic mathematical analysis of the models. The results of the analysis are complemented by numerical illustrations.
We obtain monotonicity results concerning the oscillatory solutions of the differential equation . The obtained results generalize the results given by the first author in [1] (1976). We also give some results concerning a special case of the above differential equation.
In this research we establish necessary and sufficient conditions for the stability of the zero solution of scalar Volterra integro-dynamic equation on general time scales. Our approach is based on the construction of suitable Lyapunov functionals. We will compare our findings with known results and provides application to quantum calculus.
Currently displaying 141 –
160 of
358