Instability of radial standing waves of Schrödinger equation on the exterior of a ball.
In the shape from shading problem of computer vision one attempts to recover the three-dimensional shape of an object or landscape from the shading on a single image. Under the assumptions that the surface is dusty, distant, and illuminated only from above, the problem reduces to that of solving the eikonal equation |Du|=f on a domain in . Despite various existence and uniqueness theorems for smooth solutions, we show that this problem is unstable, which is catastrophic for general numerical algorithms. ...
In this work we study the generalized Boussinesq equation with a dissipation term. We show that, under suitable conditions, a global solution for the initial value problem exists. In addition, we derive sufficient conditions for the blow-up of the solution to the problem. Furthermore, the instability of the stationary solutions of this equation is established.
We consider a reaction-diffusion system of activator-inhibitor type which is subject to Turing's diffusion-driven instability. It is shown that unilateral obstacles of various type for the inhibitor, modeled by variational inequalities, lead to instability of the trivial solution in a parameter domain where it would be stable otherwise. The result is based on a previous joint work with I.-S. Kim, but a refinement of the underlying theoretical tool is developed. Moreover, a different regime of parameters...
The paper contains conditions ensuring instantaneous shrinking of the support for solutions to semilinear parabolic equations with compactly supported coefficients of nonlinear terms and reaction-diffusion systems.
1. Introduction. In recent years, there has been considerable interest in Oxford and elsewhere in the connections between Einstein's equations, the (anti-) self-dual Yang-Mills (SDYM) equations, and the theory of integrable systems. The common theme running through this work is that, to a greater or lesser extent, all three areas involve questions that can be addressed by twistor methods. In this paper, I shall review progress, with particular emphasis on the known and potential applications in...
In this paper we prove an estimate for the measure of superlevel sets of weak solutions to quasilinear elliptic systems in divergence form. In some special cases, such an estimate allows us to improve on the integrability of the solution.
We prove that the higher integrability of the data improves on the integrability of minimizers of functionals , whose model is where and .
The paper deals with very weak solutions , , to boundary value problems of the -harmonic equation We show that, under the assumption , , any very weak solution to the boundary value problem () is integrable with provided that is sufficiently close to .
The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Bäcklund transformation. The connection of this hierarchy with integrable by Lax two-dimensional Davey-Stewartson type systems is studied.