Nonhomogeneous Cahn–Hilliard fluids
The existence of stationary solutions and blow up of solutions for a system describing the interaction of gravitationally attracting particles that obey the Fermi-Dirac statistics are studied.
The present paper describes mobile carrier transport in semiconductor devices with constant densities of ionized impurities. For this purpose we use one-dimensional partial differential equations. The work gives the proofs of global existence of solutions of systems of such kind, their bifurcations and their stability under the corresponding assumptions.
The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type where is the open ball of center and radius in , and is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain.
The paper deals with boundary value problems for systems of nonlinear elliptic equations in a relatively general form. Theorems based on monotone operator theory and concerning the existence of weak solutions of such a system, as well as the convergence of discretized problem solutions are presented. As an example, the approach is applied to the stationary Van Roosbroeck’s system, arising in semiconductor device modelling. A convergent algorithm suitable for solving sets of algebraic equations generated...
We study the lifespan of solutions to fully nonlinear second-order Cauchy problems with small real- or complex-analytic data. The nonlinear term is an analytic function in u, ū and their derivatives. We give an outline of the proof based on the method of majorants and the fixed point technique.
We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized...
In this paper we prove existence results for some nonlinear degenerate elliptic equations with data in the space of bounded Radon measures and we improve the results already obtained in Cirmi G.R., On the existence of solutions to non-linear degenerate elliptic equations with measure data, Ricerche Mat. 42 (1993), no. 2, 315–329.
This paper considers the initial-boundary value problem for the nonlinear diffusion equation with the perturbation term in an unbounded domain with smooth bounded boundary, where , , , is a single-valued maximal monotone function on , e.g., and is a function on which can be regarded as a Lipschitz continuous operator from to . The present work establishes existence and estimates for the above problem.
We study existence and approximation of non-negative solutions of partial differential equations of the typewhere is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, is a suitable non decreasing function, is a convex function. Introducing the energy functional , where is a convex function linked to by , we show that is the “gradient flow” of with respect to the 2-Wasserstein distance between probability measures on the space...
We study existence and approximation of non-negative solutions of partial differential equations of the type where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, is a suitable non decreasing function, is a convex function. Introducing the energy functional , where F is a convex function linked to f by , we show that u is the “gradient flow” of ϕ with respect to the 2-Wasserstein distance between probability measures on the space...