Displaying 281 – 300 of 479

Showing per page

Global existence of solutions for the 1-D radiative and reactive viscous gas dynamics

Wen Zhang, Jianwen Zhang (2012)

Applications of Mathematics

In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed.

Global existence of solutions of the free boundary problem for the equations of magnetohydrodynamic compressible fluid

Piotr Kacprzyk (2005)

Banach Center Publications

Global existence of solutions for equations describing a motion of magnetohydrodynamic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. We have proved that the domain occupied by the fluid remains close to the initial domain for all time.

Global existence of solutions to a chemotaxis system with volume filling effect

Tomasz Cieślak (2008)

Colloquium Mathematicae

A system of quasilinear parabolic equations modelling chemotaxis and taking into account the volume filling effect is studied under no-flux boundary conditions. The resulting system is non-uniformly parabolic. A Lyapunov functional for the system is constructed. The proof of existence and uniqueness of regular global-in-time solutions is given in cases when either the Lyapunov functional is bounded from below or chemotactic forces are suitably weakened. In the first case solutions are uniformly...

Global existence of solutions to Navier-Stokes equations in cylindrical domains

Bernard Nowakowski, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

We prove the existence of global and regular solutions to the Navier-Stokes equations in cylindrical type domains under boundary slip conditions, where coordinates are chosen so that the x₃-axis is parallel to the axis of the cylinder. Regular solutions have already been obtained on the interval [0,T], where T > 0 is large, on the assumption that the L₂-norms of the third component of the force field, of derivatives of the force field, and of the velocity field with respect to the direction of...

Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1

Sijia Zhong (2010)

Bulletin de la Société Mathématique de France

In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. s < 1 , under some bilinear Strichartz assumption. We will find some s ˜ < 1 , such that the solution is global for s > s ˜ .

Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials

Elisabetta Rocca, Riccarda Rossi (2008)

Applications of Mathematics

This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a strongly nonlinear internal energy balance equation, governing the evolution of the absolute temperature ϑ , an evolution equation for the phase change parameter χ , including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable 𝐮 . The main novelty of the model...

Global existence of weak solutions to the Fried-Gurtin model of phase transitions

Zenon Kosowski (2007)

Applicationes Mathematicae

We prove the existence of global in time weak solutions to a three-dimensional system of equations arising in a simple version of the Fried-Gurtin model for the isothermal phase transition in solids. In this model the phase is characterized by an order parameter. The problem considered here has the form of a coupled system of three-dimensional elasticity and parabolic equations. The system is studied with the help of the Faedo-Galerkin method using energy estimates.

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.

Global exponential stability of pseudo almost automorphic solutions for delayed Cohen-Grosberg neural networks with measure

Chaouki Aouiti, Hediene Jallouli, Mohsen Miraoui (2022)

Applications of Mathematics

We investigate the Cohen-Grosberg differential equations with mixed delays and time-varying coefficient: Several useful results on the functional space of such functions like completeness and composition theorems are established. By using the fixed-point theorem and some properties of the doubly measure pseudo almost automorphic functions, a set of sufficient criteria are established to ensure the existence, uniqueness and global exponential stability of a ( μ , ν ) -pseudo almost automorphic solution. The...

Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations

Yoshihiro Shibata (1993)

Commentationes Mathematicae Universitatis Carolinae

The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.

Currently displaying 281 – 300 of 479