Displaying 321 – 340 of 2279

Showing per page

A generalized strange term in Signorini’s type problems

Carlos Conca, François Murat, Claudia Timofte (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The limit behavior of the solutions of Signorini’s type-like problems in periodically perforated domains with period ε is studied. The main feature of this limit behaviour is the existence of a critical size of the perforations that separates different emerging phenomena as ε 0 . In the critical case, it is shown that Signorini’s problem converges to a problem associated to a new operator which is the sum of a standard homogenized operator and an extra zero order term (“strange term”) coming from the...

A Generalized Strange Term in Signorini's Type Problems

Carlos Conca, François Murat, Claudia Timofte (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The limit behavior of the solutions of Signorini's type-like problems in periodically perforated domains with period ε is studied. The main feature of this limit behaviour is the existence of a critical size of the perforations that separates different emerging phenomena as ε → 0. In the critical case, it is shown that Signorini's problem converges to a problem associated to a new operator which is the sum of a standard homogenized operator and an extra zero order term (“strange term”) coming from...

A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach

Sébastien Breteaux (2014)

Annales de l’institut Fourier

In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations

Jiří Neustupa (2014)

Mathematica Bohemica

We deal with a suitable weak solution ( 𝐯 , p ) to the Navier-Stokes equations in a domain Ω 3 . We refine the criterion for the local regularity of this solution at the point ( 𝐟 x 0 , t 0 ) , which uses the L 3 -norm of 𝐯 and the L 3 / 2 -norm of p in a shrinking backward parabolic neighbourhood of ( 𝐱 0 , t 0 ) . The refinement consists in the fact that only the values of 𝐯 , respectively p , in the exterior of a space-time paraboloid with vertex at ( 𝐱 0 , t 0 ) , respectively in a ”small” subset of this exterior, are considered. The consequence is that...

Currently displaying 321 – 340 of 2279