Multi-component NLS models on symmetric spaces: spectral properties versus representations theory.
We establish a multidimensional decay of oscillatory integrals with degenerate stationary points, gaining the decay with respect to all space variables. This bridges the gap between the one-dimensional decay for degenerate stationary points given by the classical van der Corput lemma and the multidimensional decay for non-degenerate stationary points given by the stationary phase method. Complex-valued phase functions as well as phases and amplitudes of limited regularity are considered. Conditions...
A type of adaptive finite element method is presented for semilinear elliptic problems based on multilevel correction scheme. The main idea of the method is to transform the semilinear elliptic equation into a sequence of linearized boundary value problems on the adaptive partitions and some semilinear elliptic problems on very low dimensional finite element spaces. Hence, solving the semilinear elliptic problem can reach almost the same efficiency as the adaptive method for the associated boundary...
We examine the theoretical and applications-specific issues relating to modeling the temporal and spatial dynamics of forest ecosystems, based on the principles of investigating dynamical models. When developing the predictive dynamical models of forest resources, there is a possibility of achieving uniqueness of the solutions to equations by taking into account the initial and boundary conditions of the solution, and the conditions of the geographical environment. We present the results of a computer...
In this work we consider the magnetic NLS equationwhere , is a magnetic potential, possibly unbounded, is a multi-well electric potential, which can vanish somewhere, is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution to (0.1), under conditions on the nonlinearity which are nearly optimal.