Displaying 361 – 380 of 515

Showing per page

Moving mesh for the axisymmetric harmonic map flow

Benoit Merlet, Morgan Pierre (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the L 2 -gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...

Moving mesh for the axisymmetric harmonic map flow

Benoit Merlet, Morgan Pierre (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the L2-gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...

Moyennes sphériques et opérateur de Helmholtz itéré

Francisco Vieli (1995)

Colloquium Mathematicae

Il est bien connu qu’une fonction f sur n est harmonique - Δf = 0 - si et seulement si sa moyenne sur toute sphère est égale à sa valeur au centre de cette sphère. De manière semblable, f vérifie l’équation de Helmholtz Δf + cf = 0 si et seulement si sa moyenne sur la sphère de centre x et de rayon r vaut Γ ( n / 2 ) ( r c / 2 ) ( 2 - n ) / 2 J ( n - 2 ) / 2 ( r c ) · f ( x ) . Dans ce travail, nous généralisons ces résultats à l’opérateur ( Δ + c ) k où k est un entier strictement positif et c une constante non nulle. Bien qu’une méthode pour y parvenir soit esquissée dans...

Multi-bump solutions for nonlinear Schrödinger equations with electromagnetic fields

Huirong Pi, Chunhua Wang (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we are concerned with the existence of multi-bump solutions for a nonlinear Schrödinger equations with electromagnetic fields. We prove under some suitable conditions that for any positive integer m, there exists ε(m) > 0 such that, for 0 < ε < ε(m), the problem has an m-bump complex-valued solution. As a result, when ε → 0, the equation has more and more multi-bump complex-valued solutions.

Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena : local study and upscaling process

Serge Blancher, René Creff, Gérard Gagneux, Bruno Lacabanne, François Montel, David Trujillo (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a “mixed finite element” method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to...

Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena: local study and upscaling process

Serge Blancher, René Creff, Gérard Gagneux, Bruno Lacabanne, François Montel, David Trujillo (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a "mixed finite element"method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to...

Multicomponent models in nuclear astrophysics

Bernard Ducomet (2008)

Banach Center Publications

We consider hydrodynamical models describing the evolution of a gaseous star in which the presence of thermonuclear reactions between several species leads to a multicomponent formulation. In the case of binary mixtures, recent 3D results are evoked. In the one-dimensional situation, we can prove global estimates and stabilization for some simplified model.

Currently displaying 361 – 380 of 515