Moving heat source reconstruction from the Cauchy boundary data.
We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the -gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...
We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the L2-gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...
Il est bien connu qu’une fonction sur est harmonique - Δf = 0 - si et seulement si sa moyenne sur toute sphère est égale à sa valeur au centre de cette sphère. De manière semblable, f vérifie l’équation de Helmholtz Δf + cf = 0 si et seulement si sa moyenne sur la sphère de centre x et de rayon r vaut . Dans ce travail, nous généralisons ces résultats à l’opérateur où k est un entier strictement positif et c une constante non nulle. Bien qu’une méthode pour y parvenir soit esquissée dans...
We consider a mesoscopic model for phase transitions in a periodic medium and we construct multibump solutions. The rational perturbative case is dealt with by explicit asymptotics.
We consider a mesoscopic model for phase transitions in a periodic medium and we construct multibump solutions. The rational perturbative case is dealt with by explicit asymptotics.
In this paper, we are concerned with the existence of multi-bump solutions for a nonlinear Schrödinger equations with electromagnetic fields. We prove under some suitable conditions that for any positive integer m, there exists ε(m) > 0 such that, for 0 < ε < ε(m), the problem has an m-bump complex-valued solution. As a result, when ε → 0, the equation has more and more multi-bump complex-valued solutions.
Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a “mixed finite element” method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to...
Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a "mixed finite element"method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to...
We consider hydrodynamical models describing the evolution of a gaseous star in which the presence of thermonuclear reactions between several species leads to a multicomponent formulation. In the case of binary mixtures, recent 3D results are evoked. In the one-dimensional situation, we can prove global estimates and stabilization for some simplified model.