Displaying 501 – 520 of 17465

Showing per page

A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media

María-Luisa Rapún, Francisco-Javier Sayas (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the...

A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media

María-Luisa Rapún, Francisco-Javier Sayas (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the...

A model of evolution of temperature and density of ions in an electrolyte

Andrzej Raczyński (2005)

Applicationes Mathematicae

We study existence and nonexistence of solutions (both stationary and evolution) for a parabolic-elliptic system describing the electrodiffusion of ions. In this model the evolution of temperature is also taken into account. For stationary states the existence of an external potential is also assumed.

A model problem for boundary layers of thin elastic shells

Philippe Karamian, Jacqueline Sanchez-Hubert, Évarisite Sanchez Palencia (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a model problem (with constant coefficients and simplified geometry) for the boundary layer phenomena which appear in thin shell theory as the relative thickness ε of the shell tends to zero. For ε = 0 our problem is parabolic, then it is a model of developpable surfaces. Boundary layers along and across the characteristic have very different structure. It also appears internal layers associated with propagations of singularities along the characteristics. The special structure of...

A modified quasi-boundary value method for the backward time-fractional diffusion problem

Ting Wei, Jun-Gang Wang (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we consider a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine the initial data from a noisy final data. Based on a series expression of the solution, a conditional stability for the initial data is given. Further, we propose a modified quasi-boundary value regularization method to deal with the backward problem and obtain two kinds of convergence rates by using an a priori regularization parameter...

Currently displaying 501 – 520 of 17465