Displaying 521 – 540 of 555

Showing per page

Low Mach number limit for viscous compressible flows

Raphaël Danchin (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations...

Low Mach number limit for viscous compressible flows

Raphaël Danchin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes...

Low Mach number limit of a compressible Euler-Korteweg model

Yajie Wang, Jianwei Yang (2023)

Applications of Mathematics

This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.

Low regularity Cauchy theory for the water-waves problem: canals and swimming pools

T. Alazard, N. Burq, C. Zuily (2011)

Journées Équations aux dérivées partielles

The purpose of this talk is to present some recent results about the Cauchy theory of the gravity water waves equations (without surface tension). In particular, we clarify the theory as well in terms of regularity indexes for the initial conditions as fin terms of smoothness of the bottom of the domain (namely no regularity assumption is assumed on the bottom). Our main result is that, following the approach developed in [1, 2], after suitable para-linearizations, the system can be arranged into...

Low Volatility Options and Numerical Diffusion of Finite Difference Schemes

Milev, Mariyan, Tagliani, Aldo (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 65M06, 65M12.In this paper we explore the numerical diffusion introduced by two nonstandard finite difference schemes applied to the Black-Scholes partial differential equation for pricing discontinuous payoff and low volatility options. Discontinuities in the initial conditions require applying nonstandard non-oscillating finite difference schemes such as the exponentially fitted finite difference schemes suggested by D. Duffy and the Crank-Nicolson variant...

Low-Dimensional Description of Pulses under the Action of Global Feedback Control

Y. Kanevsky, A. A. Nepomnyashchy (2012)

Mathematical Modelling of Natural Phenomena

The influence of a global delayed feedback control which acts on a system governed by a subcritical complex Ginzburg-Landau equation is considered. The method based on a variational principle is applied for the derivation of low-dimensional evolution models. In the framework of those models, one-pulse and two-pulse solutions are found, and their linear stability analysis is carried out. The application of the finite-dimensional model allows to reveal...

Lower and upper bounds for the Rayleigh conductivity of a perforated plate

S. Laurens, S. Tordeux, A. Bendali, M. Fares, P. R. Kotiuga (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Lower and upper bounds for the Rayleigh conductivity of a perforation in a thick plate are usually derived from intuitive approximations and by physical reasoning. This paper addresses a mathematical justification of these approaches. As a byproduct of the rigorous handling of these issues, some improvements to previous bounds for axisymmetric holes are given as well as new estimates for tilted perforations. The main techniques are a proper use of the Dirichlet and Kelvin variational principlesin...

Lower bounds for pseudo-differential operators

Nicolas Lerner, Jean Nourrigat (1990)

Annales de l'institut Fourier

This paper contains some new results on lower bounds for pseudo-differential operators whose symbols do not remain positive. Non-negativity of averages of the symbol on canonical images of the unit ball is sufficient to get a Gårding type inequality for Schrödinger operators with magnetic potential and one dimensional pseudo-differential operators.

Lower bounds for Schrödinger operators in H¹(ℝ)

Ronan Pouliquen (1999)

Studia Mathematica

We prove trace inequalities of type | | u ' | | L 2 2 + j k j | u ( a j ) | 2 λ | | u | | L 2 2 where u H 1 ( ) , under suitable hypotheses on the sequences a j j and k j j , with the first sequence increasing and the second bounded.

Currently displaying 521 – 540 of 555