The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 621 –
640 of
876
In this paper necessary and sufficient conditions of L∞-controllability and approximate L∞-controllability are obtained for the control system wtt = wxx − q2w, w(0,t) = u(t), x > 0, t ∈ (0,T), where q ≥ 0, T > 0, u ∈ L∞(0,T) is a control. This system is considered in the Sobolev spaces.
In this paper necessary and sufficient conditions of L∞-controllability and
approximate L∞-controllability are obtained for the control system
wtt = wxx − q2w,
w(0,t) = u(t),
x > 0, t ∈ (0,T), where
q ≥ 0, T > 0,
u ∈ L∞(0,T) is a control. This system is
considered in the Sobolev spaces.
We discuss several new results on nonnegative approximate controllability for the one-dimensional Heat equation governed by either multiplicative or nonnegative additive control, acting within a proper subset of the space domain at every moment of time. Our methods allow us to link these two types of controls to some extend. The main results include approximate controllability properties both for the static and mobile control supports.
In the paper definitions of various kinds of stability and boundedness of solutions of linear controllable systems of partial differential equations are introduced and their interconnections are derived. By means of Ljapunov's functions theorems are proved which give necessary and sufficient conditions for particular kinds of stability and boundedness of the solutions.
We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function ϕ of the particle and the control is the length l(t) of the potential well. We prove the following controllability result :
given close enough to an eigenstate corresponding to the length l = 1 and close enough to another eigenstate corresponding to the length l=1, there exists a continuous function with T > 0, such that l(0)...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
We consider a structural acoustic problem with the flexible wall modeled by a thermoelastic plate, subject to Dirichlet boundary control in the thermal component. We establish sharp regularity results for the traces of the thermal variable on the boundary in case the system is supplemented with clamped mechanical boundary conditions. These regularity estimates are most crucial for validity of the optimal control theory developed by Acquistapace et al. [Adv. Differential Equations, 2005], which ensures...
We study the influence of natural convection on stability of reaction fronts in
porous media. The model consists of the heat equation, of the equation for the depth of
conversion and of the equations of motion under the Darcy law. Linear stability analysis of
the problem is fulfilled, the stability boundary is found. Direct numerical simulations are
performed and compared with the linear stability analysis.
The paper is devoted to the convergence analysis of a well-known
cell-centered Finite Volume Method (FVM) for a
convection-diffusion problem in . This FVM is based on Voronoi
boxes and
exponential fitting. To prove the convergence of the FVM, we use
a new nonconforming Petrov-Galerkin Finite Element Method (FEM)
for which the system of linear equations coincides completely with
that of the FVM. Thus, by proving convergence properties of the
FEM we obtain similar ones for the FVM. For the error...
It is established convergence to a particular equilibrium for weak solutions of abstract linear equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an asymptotically...
It is established convergence to a particular equilibrium for weak solutions of abstract linear
equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear
hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result
in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a
particular equilibrium via the introduction of an asymptotically...
Currently displaying 621 –
640 of
876