A note on stability for linear partial differential equations
It is easily seen that the graphs of harmonic conjugate functions (the real and imaginary parts of a holomorphic function) have the same nonpositive Gaussian curvature. The converse to this statement is not as simple. Given two graphs with the same nonpositive Gaussian curvature, when can we conclude that the functions generating their graphs are harmonic? In this paper, we show that given a graph with radially symmetric nonpositive Gaussian curvature in a certain form, there are (up to) four families...
We consider the Cahn-Hilliard equation in with two types of critically growing nonlinearities: nonlinearities satisfying a certain limit condition as and logistic type nonlinearities. In both situations we prove the -bound on the solutions and show that the individual solutions are suitably attracted by the set of equilibria. This complements the results in the literature; see J. W. Cholewa, A. Rodriguez-Bernal (2012).
This paper is concerned with the existence of positive solutions of a multi-point boundary value problem for higher-order differential equation with one-dimensional -Laplacian. Examples are presented to illustrate the main results. The result in this paper generalizes those in existing papers.
The existence of weak solution for periodic-Dirichlet problem to semilinear heat equations with superlinear growth non-linear term is treated.
We prove that there exists a suitable weak solution of the Navier-Stokes equation, which satisfies the generalized energy inequality for every nonnegative test function. This improves the famous result on existence of a suitable weak solution which satisfies this inequality for smooth nonnegative test functions with compact support in the space-time.