Displaying 1241 – 1260 of 1318

Showing per page

Exponential convergence to the stationary measure and hyperbolicity of the minimisers for random Lagrangian Systems

Boritchev, Alexandre (2017)

Proceedings of Equadiff 14

We consider a class of 1d Lagrangian systems with random forcing in the spaceperiodic setting: φ t + φ x 2 / 2 = F ω , x S 1 = / . These systems have been studied since the 1990s by Khanin, Sinai and their collaborators [7, 9, 11, 12, 15]. Here we give an overview of their results and then we expose our recent proof of the exponential convergence to the stationary measure [6]. This is the first such result in a classical setting, i.e. in the dual-Lipschitz metric with respect to the Lebesgue space L p for finite p , partially answering...

Exponential decay of a solution for some parabolic equation involving a time nonlocal term

Kota Kumazaki (2015)

Mathematica Bohemica

We consider the large time behavior of a solution of a parabolic type equation involving a nonlocal term depending on the unknown function. This equation is proposed as a mathematical model of carbon dioxide transport in concrete carbonation process, and we proved the existence, uniqueness and large time behavior of a solution of this model. In this paper, we derive the exponential decay estimate of the solution of this model under restricted boundary data and initial data.

Exponential decay to partially thermoelastic materials

Jaime E. Muñoz Rivera, Vanilde Bisognin, Eleni Bisognin (2002)

Bollettino dell'Unione Matematica Italiana

We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.

Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems

Cheng-Zhong Xu, Gauthier Sallet (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study the frequency and time domain behaviour of a heat exchanger network system. The system is governed by hyperbolic partial differential equations. Both the control operator and the observation operator are unbounded but admissible. Using the theory of symmetric hyperbolic systems, we prove exponential stability of the underlying semigroup for the heat exchanger network. Applying the recent theory of well-posed infinite-dimensional linear systems, we prove that the system is...

Exponential Stability and Transfer Functions of Processes Governed by Symmetric Hyperbolic Systems

Cheng-Zhong Xu, Gauthier Sallet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study the frequency and time domain behaviour of a heat exchanger network system. The system is governed by hyperbolic partial differential equations. Both the control operator and the observation operator are unbounded but admissible. Using the theory of symmetric hyperbolic systems, we prove exponential stability of the underlying semigroup for the heat exchanger network. Applying the recent theory of well-posed infinite-dimensional linear systems, we prove that the system...

Currently displaying 1241 – 1260 of 1318