The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1261 – 1280 of 1318

Showing per page

Exponential stability for Timoshenko model with thermal effect

Luiz Gutemberg Rosário Miranda, Bruno Magalhães Alves (2025)

Applications of Mathematics

We performe an exponential decay analysis for a Timoshenko-type system under the thermal effect by constructing the Lyapunov functional. More precisely, this thermal effect is acting as a mechanism for dissipating energy generated by the bending of the beam, acting only on the vertical displacement equation, different from other works already existing in the literature. Furthermore, we show the good placement of the problem using semigroup theory.

Exponential stability of a flexible structure with history and thermal effect

Roberto Díaz, Jaime Muñoz, Carlos Martínez, Octavio Vera (2020)

Applications of Mathematics

In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.

Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations

Zhuangchu Luo, Hua Chen, Changgui Zhang (2012)

Annales de l’institut Fourier

In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at ( t , x ) = ( 0 , 0 ) C 2 . Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the k -summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.

Extended thermodynamics---a theory of symmetric hyperbolic field equations

Ingo Müller (2008)

Applications of Mathematics

Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear differential equations of first order. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation, provide an explicit example...

Currently displaying 1261 – 1280 of 1318