On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term
For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.
We consider a two-dimensional Navier-Stokes shear flow with time dependent boundary driving and subject to Tresca law. We establish the existence of a unique global in time solution and then, using a recent method based on the concept of the Kuratowski measure of noncompactness of a bounded set, we prove the existence of the pullback attractor for the associated cocycle. This research is motivated by a problem from lubrication theory.
We consider a one-dimensional incompressible flow through a porous medium undergoing deformations such that the porosity and the hydraulic conductivity can be considered to be functions of the flux intensity. The medium is initially dry and we neglect capillarity, so that a sharp wetting front proceeds into the medium. We consider the open problem of the continuation of the solution in the case of onset of singularities, which can be interpreted as a local collapse of the medium, in the general...
Let be a bounded domain in with a smooth boundary . In this work we study the existence of solutions for the following boundary value problem: where is a -function such that for every and for .
We prove the existence of solutions to the evolutionary Stokes system in a bounded domain Ω ⊂ ℝ³. The main result shows that the velocity belongs either to or to with p > 3 and s ∈ ℝ₊ ∪ 0. The proof is divided into two steps. First the existence in for k ∈ ℕ is proved. Next applying interpolation theory the existence in Besov spaces in a half space is shown. Finally the technique of regularizers implies the existence in a bounded domain. The result is generalized to the spaces and with...