Displaying 1221 – 1240 of 2162

Showing per page

On the existence of five nontrivial solutions for resonant problems with p-Laplacian

Leszek Gasiński, Nikolaos S. Papageorgiou (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we study a nonlinear Dirichlet elliptic differential equation driven by the p-Laplacian and with a nonsmooth potential. The hypotheses on the nonsmooth potential allow resonance with respect to the principal eigenvalue λ₁ > 0 of ( - Δ , W 1 , p ( Z ) ) . We prove the existence of five nontrivial smooth solutions, two positive, two negative and the fifth nodal.

On the existence of infinitely many solutions for a class of semilinear elliptic equations in R N

Francesca Alessio, Paolo Caldiroli, Piero Montecchiari (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show, by variational methods, that there exists a set A open and dense in a L R N : a 0 such that if a A then the problem - u + u = a x u p - 1 u , u H 1 R N , with p subcritical (or more general nonlinearities), admits infinitely many solutions.

On the existence of multiple positive solutions for a certain class of elliptic problems

Aleksandra Orpel (2004)

Banach Center Publications

We investigate the existence of solutions for the Dirichlet problem including the generalized balance of a membrane equation. We present a duality theory and variational principle for this problem. As one of the consequences of the duality we obtain some numerical results which give a measure of a duality gap between the primal and dual functional for approximate solutions.

On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.

Jacqueline Fleckinger, Jesús Hernández, François De Thélin (2003)

RACSAM

We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.

On the existence of periodic solutions of an hyperbolic equation in a thin domain

Russell Johnson, Mikhail Kamenskii, Paolo Nistri (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.

Currently displaying 1221 – 1240 of 2162