On the existence of classical solutions for differential-functional IBVP.
In this paper we study a nonlinear Dirichlet elliptic differential equation driven by the p-Laplacian and with a nonsmooth potential. The hypotheses on the nonsmooth potential allow resonance with respect to the principal eigenvalue λ₁ > 0 of . We prove the existence of five nontrivial smooth solutions, two positive, two negative and the fifth nodal.
The author examined non-zero -periodic (in time) solutions for a semilinear beam equation under the condition that the period is an irrational multiple of the length. It is shown that for a.e. (in the sense of the Lebesgue measure on ) the solutions do exist provided the right-hand side of the equation is sublinear.
We show, by variational methods, that there exists a set open and dense in such that if then the problem , with subcritical (or more general nonlinearities), admits infinitely many solutions.
We investigate the existence of solutions for the Dirichlet problem including the generalized balance of a membrane equation. We present a duality theory and variational principle for this problem. As one of the consequences of the duality we obtain some numerical results which give a measure of a duality gap between the primal and dual functional for approximate solutions.
We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
The existence of nonnegative radial solutions for some systems of m (m ≥ 1) quasilinear elliptic equations is proved by a simple application of a fixed point theorem in cones.
For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.