The search session has expired. Please query the service again.
Displaying 141 –
160 of
2166
We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values with By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case of (P) in which the nonlinear term contains the sum . Under suitable conditions, we prove that the solution of converges to the solution of the corresponding...
An example of a locally unsolvable hyperbolic equation of the second order is constructed, which has smooth () coefficients, but has no solutions in the class of distributions.
In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in . We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.
We propose to formally derive a low Mach number model adapted to the modeling of a water
nuclear core (e.g. of PWR- or BWR-type) in the forced convection regime
or in the natural convection regime by filtering out the acoustic waves in the
compressible Navier-Stokes system. Then, we propose a monodimensional stationary
analytical solution with regular and singular charge loss when the equation of state is a
stiffened gas equation. Moreover, we show...
Given a bounded open set in (or in a Riemannian manifold) and a partition of by open sets , we consider the quantity where is the ground state energy of the Dirichlet realization of the Laplacian in . If we denote by the infimum over all the -partitions of , a minimal -partition is then a partition which realizes the infimum. When , we find the two nodal domains of a second eigenfunction, but the analysis of higher ’s is non trivial and quite interesting. In this paper, we give...
We consider a mathematical model proposed in [1] for the cristallization of polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. The model includes a constraint on the crystal volume fraction. Essentially, the model is a system of both second order and first order evolutionary partial differential equations with nonlinear terms which are Lipschitz continuous, as in [1], or Hölder continuous, as in [3]. The main novelty here is the...
The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution.
The Collatz method of twosided eigenvalue estimates was extended by K. Rektorys in his monography Variational Methods to the case of differential equations of the form with elliptic operators. This method requires to solve, successively, certain boundary value problems. In the case of partial differential equations, these problems are to be solved approximately, as a rule, and this is the source of further errors. In the work, it is shown how to estimate these additional errors, or how to avoid...
In this paper we mainly introduce a min-max procedure to prove the existence of positive solutions for certain semilinear elliptic equations in RN.
Currently displaying 141 –
160 of
2166