An ill-posed nonlocal two-point problem for systems of partial differential equations.
An implicit-explicit (IMEX) method is developed for the numerical solution of reaction-diffusion equations with pure Neumann boundary conditions. The corresponding method of lines scheme with finite differences is analyzed: explicit conditions are given for its convergence in the ‖·‖∞ norm. The results are applied to a model for determining the overpotential in a proton exchange membrane (PEM) fuel cell.
In this article, we consider the initial value problem which is obtained after a space discretization (with space step ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between and the time step size...
In this article, we consider the initial value problem which is obtained after a space discretization (with space step h) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time...
The local maximal operator for the Schrödinger operators of order α > 1 is shown to be bounded from to L² for any s > 3/8. This improves the previous result of Sjölin on the regularity of solutions to fractional order Schrödinger equations. Our method is inspired by Bourgain’s argument in the case of α = 2. The extension from α = 2 to general α > 1 faces three essential obstacles: the lack of Lee’s reduction lemma, the absence of the algebraic structure of the symbol and the inapplicable...
As observed by Yamazaki, the third component of the magnetic field can be estimated by the corresponding component of the velocity field in
Here, we prove the uniform observability of a two-grid method for the semi-discretization of the -wave equation for a time ; this time, if the observation is made in , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I 338 (2004) 413–418]. Our proof follows an Ingham type approach.
Here, we prove the uniform observability of a two-grid method for the semi-discretization of the 1D-wave equation for a time ; this time, if the observation is made in , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I338 (2004) 413–418]. Our proof follows an Ingham type approach.