Displaying 1601 – 1620 of 1682

Showing per page

Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I

Jiro Takeuchi (2002)

Bollettino dell'Unione Matematica Italiana

Si danno condizioni sufficienti e condizioni necessarie affinché il problema di Cauchy per alcuni operatori di tipo Schrödinger sia ben posto in spazi di Sobolev. Gli operatori qui considerati sono operatori di Schrödinger con potenziali vettoriali complessi, una generalizzazione degli operatori di 2-evoluzione nel senso di Petrowsky, e alcuni sistemi tipo Leray-Volevich di operatori lineari a derivate parziali. Il metodo che usiamo in questo articolo è la simmetrizazione L 2 degli operatori non dipendenti...

Symmetric hyperbolic systems with boundary conditions that do not satisfy the Kreiss-Sakamoto condition

Matthias Eller (2008)

Applicationes Mathematicae

Symmetric hyperbolic systems with a class of non-homogeneous boundary conditions that do not satisfy the Kreiss-Sakamoto condition (or uniform Lopatinskii condition) are discussed. The boundary conditions are of conservative type. An energy estimate which provides interior and boundary regularity for weak solutions to the system is proved. The results are valid for operators with rough coefficients. As an example the anisotropic Maxwell system is considered.

Symmetries of connections on fibered manifolds

Alexandr Vondra (1994)

Archivum Mathematicum

The (infinitesimal) symmetries of first and second-order partial differential equations represented by connections on fibered manifolds are studied within the framework of certain “strong horizontal“ structures closely related to the equations in question. The classification and global description of the symmetries is presented by means of some natural compatible structures, eġḃy vertical prolongations of connections.

Symmetries of the nonlinear Schrödinger equation

Benoît Grébert, Thomas Kappeler (2002)

Bulletin de la Société Mathématique de France

Symmetries of the defocusing nonlinear Schrödinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum < λ k - λ k + < λ k + 1 - of a Zakharov-Shabat operator is symmetric,i.e. λ k ± = - λ - k for all k , if and only if the sequence ( γ k ) k of gap lengths, γ k : = λ k + - λ k - , is symmetric with respect to k = 0 .

Symmetrization of functions and principal eigenvalues of elliptic operators

François Hamel, Nikolai Nadirashvili, Emmanuel Russ (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

In this paper, we consider shape optimization problems for the principal eigenvalues of second order uniformly elliptic operators in bounded domains of n . We first recall the classical Rayleigh-Faber-Krahn problem, that is the minimization of the principal eigenvalue of the Dirichlet Laplacian in a domain with fixed Lebesgue measure. We then consider the case of the Laplacian with a bounded drift, that is the operator - Δ + v · , for which the minimization problem is still well posed. Next, we deal with...

Currently displaying 1601 – 1620 of 1682