Symmetry of the barochronous motions of a gas.
Some symmetry problems are formulated and solved. New simple proofs are given for some symmetry problems studied earlier. One of the results is as follows: if a single-layer potential of a surface, homeomorphic to a sphere, with a constant charge density, is equal to c/|x| for all sufficiently large |x|, where c > 0 is a constant, then the surface is a sphere.
We study uniformly elliptic fully nonlinear equations , and prove results of Gidas–Ni–Nirenberg type for positive viscosity solutions of such equations. We show that symmetries of the equation and the domain are reflected by the solution, both in bounded and unbounded domains.
In this paper we completely classify symplectic actions of a torus on a compact connected symplectic manifold when some, hence every, principal orbit is a coisotropic submanifold of . That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian,...
Dans cet article on étudie la régularité analytique (ou Gevrey) des courbes intégrales de champs de vecteurs solutions non nécessairement lipschitziennes du système d’Euler incompressible. On en déduit que le front d’onde analytique (ou Gevrey) de ces solutions est localisé dans la variété caractéristique de l’opérateur linéarisé.