A note on the centralizer of topological isometric extensions
The centralizer of a semisimple isometric extension of a minimal flow is described.
The centralizer of a semisimple isometric extension of a minimal flow is described.
We give a sufficient condition for the construction of Markov fibred systems using countable Markov partitions with locally bounded distortion.
We investigate the properties of the entropy and conditional entropy of measurable partitions of unity in the space of essentially bounded functions defined on a Lebesgue probability space.
The paper is devoted to the question whether some kind of additional information makes it possible to determine the fundamental matrix of variational equations in . An application concerning computation of a derivative of a scalar Poincaré mapping is given.
In a series of papers, Bandt and the author have given a symbolic and topological description of locally connected quadratic Julia sets by use of special closed equivalence relations on the circle called Julia equivalences. These equivalence relations reflect the landing behaviour of external rays in the case of local connectivity, and do not apply completely if a Julia set is connected but fails to be locally connected. However, rational external rays land also in the general case. The present...
In this note, we discuss certain generalizations of γ-radonifying operators and their applications to the regularity for linear stochastic evolution equations on some special Banach spaces. Furthermore, we also consider a more general class of operators, namely the so-called summing operators and discuss the application to the compactness of the heat semi-group between weighted -spaces.
The optimal and reliable performance of doubly fed induction generator is essential for the efficient and optimal operation of wind energy conversion systems. This paper considers the nonlinear dynamic of a DFIG linked to a power grid and presents a new robust model predictive control technique of active and reactive power by the use of the linear matrix inequality in DFIG-based WECS. The control law is obtained through the LMI-based model predictive control that allows considering both economic...
In this note, we consider the question of local analytic equivalence of analytic functions which fix the origin and are tangent to the identity. All mappings and equivalences are considered in the non-archimedean context e.g. all norms can be considered -adic norms. We show that any two mappings and which are formally equivalent are also analytically equivalent. We consider the related questions of roots and centralizers for analytic mappings. In this setting, anything which can be done formally...
We study dynamical systems in the non-Archimedean number fields (i.e. fields with non-Archimedean valuation). The main results are obtained for the fields of p-adic numbers and complex p-adic numbers. Already the simplest p-adic dynamical systems have a very rich structure. There exist attractors, Siegel disks and cycles. There also appear new structures such as fuzzy cycles. A prime number p plays the role of parameter of a dynamical system. The behavior of the iterations depends on this parameter...
We prove that if an n×n matrix defined over ℚ ₚ (or more generally an arbitrary complete, discretely-valued, non-Archimedean field) satisfies a certain congruence property, then it has a strictly maximal eigenvalue in ℚ ₚ, and that iteration of the (normalized) matrix converges to a projection operator onto the corresponding eigenspace. This result may be viewed as a p-adic analogue of the Perron-Frobenius theorem for positive real matrices.
In a recent preprint [B], Bergweiler relates the number of critical points contained in the immediate basin of a multiple fixed point β of a rational map f: ℙ¹ → ℙ¹, the number N of attracting petals and the residue ι(f,β) of the 1-form dz/(z-f(z)) at β. In this article, we present a different approach to the same problem, which we were developing independently at the same time. We apply our method to answer a question raised by Bergweiler. In particular, we prove that when there are only...