The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1981 – 2000 of 4762

Showing per page

Index filtrations and Morse decompositions for discrete dynamical systems

P. Bartłomiejczyk, Z. Dzedzej (1999)

Annales Polonici Mathematici

On a Morse decomposition of an isolated invariant set of a homeomorphism (discrete dynamical system) there are partial orderings defined by the homeomorphism. These are called admissible orderings of the Morse decomposition. We prove the existence of index filtrations for admissible total orderings of a Morse decomposition and introduce the connection matrix in this case.

Induced subsystems associated to a Cantor minimal system

Heidi Dahl, Mats Molberg (2009)

Colloquium Mathematicae

Let (X,T) be a Cantor minimal system and let (R,) be the associated étale equivalence relation (the orbit equivalence relation). We show that for an arbitrary Cantor minimal system (Y,S) there exists a closed subset Z of X such that (Y,S) is conjugate to the subsystem (Z,T̃), where T̃ is the induced map on Z from T. We explore when we may choose Z to be a T-regular and/or a T-thin set, and we relate T-regularity of a set to R-étaleness. The latter concept plays an important role in the study of...

Infinite ergodic index d -actions in infinite measure

E. Muehlegger, A. Raich, C. Silva, M. Touloumtzis, B. Narasimhan, W. Zhao (1999)

Colloquium Mathematicae

We construct infinite measure preserving and nonsingular rank one d -actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving d -actions; for these we show that the individual basis transformations have conservative ergodic Cartesian...

Infinite Iterated Function Systems: A Multivalued Approach

K. Leśniak (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that a compact family of bounded condensing multifunctions has bounded condensing set-theoretic union. Compactness is understood in the sense of the Chebyshev uniform semimetric induced by the Hausdorff distance and condensity is taken w.r.t. the Hausdorff measure of noncompactness. As a tool, we present an estimate for the measure of an infinite union. Then we apply our result to infinite iterated function systems.

Infinite Iterated Function Systems Depending on a Parameter

Ludwik Jaksztas (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

This paper is motivated by the problem of dependence of the Hausdorff dimension of the Julia-Lavaurs sets J 0 , σ for the map f₀(z) = z²+1/4 on the parameter σ. Using homographies, we imitate the construction of the iterated function system (IFS) whose limit set is a subset of J 0 , σ , given by Urbański and Zinsmeister. The closure of the limit set of our IFS ϕ σ , α n , k is the closure of some family of circles, and if the parameter σ varies, then the behavior of the limit set is similar to the behavior of J 0 , σ . The parameter...

Infinite measure preserving flows with infinite ergodic index

Alexandre I. Danilenko, Anton V. Solomko (2009)

Colloquium Mathematicae

We construct a rank-one infinite measure preserving flow ( T r ) r such that for each p > 0, the “diagonal” flow ( T r × × T r ) r ( p t i m e s ) on the product space is ergodic.

Infinite periodic points of endomorphisms over special confluent rewriting systems

Julien Cassaigne, Pedro V. Silva (2009)

Annales de l’institut Fourier

We consider endomorphisms of a monoid defined by a special confluent rewriting system that admit a continuous extension to the completion given by reduced infinite words, and study from a dynamical viewpoint the nature of their infinite periodic points. For prefix-convergent endomorphisms and expanding endomorphisms, we determine the structure of the set of all infinite periodic points in terms of adherence values, bound the periods and show that all regular periodic points are attractors.

Infinite products of random matrices and repeated interaction dynamics

Laurent Bruneau, Alain Joye, Marco Merkli (2010)

Annales de l'I.H.P. Probabilités et statistiques

Let Ψn be a product of n independent, identically distributed random matrices M, with the properties that Ψn is bounded in n, and that M has a deterministic (constant) invariant vector. Assume that the probability of M having only the simple eigenvalue 1 on the unit circle does not vanish. We show that Ψn is the sum of a fluctuating and a decaying process. The latter converges to zero almost surely, exponentially fast as n→∞. The fluctuating part converges in Cesaro mean to a limit that is characterized...

Infinite queueing systems with tree structure

Lucie Fajfrová (2006)

Kybernetika

We focus on invariant measures of an interacting particle system in the case when the set of sites, on which the particles move, has a structure different from the usually considered set d . We have chosen the tree structure with the dynamics that leads to one of the classical particle systems, called the zero range process. The zero range process with the constant speed function corresponds to an infinite system of queues and the arrangement of servers in the tree structure is natural in a number...

Currently displaying 1981 – 2000 of 4762