The search session has expired. Please query the service again.

Displaying 2721 – 2740 of 4762

Showing per page

On derivations and crossed homomorphisms

Viktor Losert (2010)

Banach Center Publications

We discuss some results about derivations and crossed homomorphisms arising in the context of locally compact groups and their group algebras, in particular, L¹(G), the von Neumann algebra VN(G) and actions of G on related algebras. We answer a question of Dales, Ghahramani, Grønbæk, showing that L¹(G) is always permanently weakly amenable. Then we show that for some classes of groups (e.g. IN-groups) the homology of L¹(G) with coefficients in VN(G) is trivial. But this is no longer true, in general,...

On dicritical foliations and Halphen pencils

Luís Gustavo Mendes, Paulo Sad (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The aim of this article is to provide information on the number and on the geometrical position of singularities of holomorphic foliations of the projective plane. As an application it is shown that certain foliations are in fact Halphen pencils of elliptic curves. The results follow from Miyaoka’s semipositivity theorem, combined with recent developments on the birational geometry of foliations.

On diffeomorphisms with polynomial growth of the derivative on surfaces

Krzysztof Frączek (2004)

Colloquium Mathematicae

We consider zero entropy C -diffeomorphisms on compact connected C -manifolds. We introduce the notion of polynomial growth of the derivative for such diffeomorphisms, and study it for diffeomorphisms which additionally preserve a smooth measure. We show that if a manifold M admits an ergodic diffeomorphism with polynomial growth of the derivative then there exists a smooth flow with no fixed point on M. Moreover, if dim M = 2, then necessarily M = ² and the diffeomorphism is C -conjugate to a skew...

On disjointness properties of some smooth flows

Krzysztof Frączek, Mariusz Lemańczyk (2005)

Fundamenta Mathematicae

Special flows over some locally rigid automorphisms and under L² ceiling functions satisfying a local L² Denjoy-Koksma type inequality are considered. Such flows are proved to be disjoint (in the sense of Furstenberg) from mixing flows and (under some stronger assumption) from weakly mixing flows for which the weak closure of the set of all instances consists of indecomposable Markov operators. As applications we prove that ∙ special flows built over ergodic interval exchange...

On embeddability of automorphisms into measurable flows from the point of view of self-joining properties

Joanna Kułaga-Przymus (2015)

Fundamenta Mathematicae

We compare self-joining and embeddability properties. In particular, we prove that a measure preserving flow ( T t ) t with T₁ ergodic is 2-fold quasi-simple (resp. 2-fold distally simple) if and only if T₁ is 2-fold quasi-simple (resp. 2-fold distally simple). We also show that the Furstenberg-Zimmer decomposition for a flow ( T t ) t with T₁ ergodic with respect to any flow factor is the same for ( T t ) t and for T₁. We give an example of a 2-fold quasi-simple flow disjoint from simple flows and whose time-one map is...

On energy conservation of the simplified Takahashi-Imada method

Ernst Hairer, Robert I. McLachlan, Robert D. Skeel (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In long-time numerical integration of Hamiltonian systems, and especially in molecular dynamics simulation, it is important that the energy is well conserved. For symplectic integrators applied with sufficiently small step size, this is guaranteed by the existence of a modified Hamiltonian that is exactly conserved up to exponentially small terms. This article is concerned with the simplified Takahashi-Imada method, which is a modification of the Störmer-Verlet method that is as easy to implement...

On enveloping semigroups of almost one-to-one extensions of minimal group rotations

Rafał Pikuła (2012)

Colloquium Mathematicae

We consider a class of symbolic systems over a finite alphabet which are minimal almost one-to-one extensions of rotations of compact metric monothetic groups and provide computations of their enveloping semigroups that highlight their algebraic structure. We describe the set of idempotents of these semigroups and introduce a classification that can help distinguish between certain such systems having zero topological entropy.

On enveloping semigroups of nilpotent group actions generated by unipotent affine transformations of the torus

Rafał Pikuła (2010)

Studia Mathematica

Let G be a group generated by a set of affine unipotent transformations T: X → X of the form T(x) = A x + α, where A is a lower triangular unipotent matrix, α is a constant vector, and X is a finite-dimensional torus. We show that the enveloping semigroup E(X,G) of the dynamical system (X,G) is a nilpotent group and find upper and lower bounds on its nilpotency class. Also, we obtain a description of E(X,G) as a quotient space.

On ergodicity of some cylinder flows

Krzysztof Frączek (2000)

Fundamenta Mathematicae

We study ergodicity of cylinder flows of the form    T f : T × T × , T f ( x , y ) = ( x + α , y + f ( x ) ) , where f : T is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that D k f is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of D k f have some good properties, then T f is ergodic. Moreover, there exists ε f > 0 such that if v : T is a function with zero integral such that D k v is of bounded variation...

On exponential convergence to a stationary measure for a class of random dynamical systems

Sergei B. Kuksin (2001)

Journées équations aux dérivées partielles

For a class of random dynamical systems which describe dissipative nonlinear PDEs perturbed by a bounded random kick-force, I propose a “direct proof” of the uniqueness of the stationary measure and exponential convergence of solutions to this measure, by showing that the transfer-operator, acting in the space of probability measures given the Kantorovich metric, defines a contraction of this space.

On families of trajectories of an analytic gradient vector field

Adam Dzedzej, Zbigniew Szafraniec (2005)

Annales Polonici Mathematici

For an analytic function f:ℝⁿ,0 → ℝ,0 having a critical point at the origin, we describe the topological properties of the partition of the family of trajectories of the gradient equation ẋ = ∇f(x) attracted by the origin, given by characteristic exponents and asymptotic critical values.

Currently displaying 2721 – 2740 of 4762