Displaying 2961 – 2980 of 4754

Showing per page

On the integrability of the generalized Yang-Mills system

A. Lesfari, A. Elachab (2004)

Applicationes Mathematicae

We consider a hamiltonian system which, in a special case and under the gauge group SU(2), can be considered as a reduction of the Yang-Mills field equations. We prove explicitly, using the Lax spectral curve technique and the van Moerbeke-Mumford method, that the flows generated by the constants of motion are straight lines on the Jacobi variety of a genus two Riemann surface.

On the KAM - Theory Conditions for the Kirchhoff Top

Christov, Ognyan (1997)

Serdica Mathematical Journal

* Partially supported by Grant MM523/95 with Ministry of Science and Technologies.In this paper the classical Kirchhoff case of motion of a rigid body in an infinite ideal fluid is considered. Then for the corresponding Hamiltonian system on the zero integral level, the KAM theory conditions are checked. In contrast to the known similar results, there exists a curve in the bifurcation diagram along which the Kolmogorov’s condition vanishes for certain values of the parameters.

On the L 2 -instability and L 2 -controllability of steady flows of an ideal incompressible fluid

Alexander Shnirelman (1999)

Journées équations aux dérivées partielles

In the existing stability theory of steady flows of an ideal incompressible fluid, formulated by V. Arnold, the stability is understood as a stability with respect to perturbations with small in L 2 vorticity. Nothing has been known about the stability under perturbation with small energy, without any restrictions on vorticity; it was clear that existing methods do not work for this (the most physically reasonable) class of perturbations. We prove that in fact, every nontrivial steady flow is unstable...

On the Lagrange-Souriau form in classical field theory

D. R. Grigore, Octavian T. Popp (1998)

Mathematica Bohemica

The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric...

On the local convergence of Kung-Traub's two-point method and its dynamics

Parandoosh Ataei Delshad, Taher Lotfi (2020)

Applications of Mathematics

In this paper, the local convergence analysis of the family of Kung-Traub's two-point method and the convergence ball for this family are obtained and the dynamical behavior on quadratic and cubic polynomials of the resulting family is studied. We use complex dynamic tools to analyze their stability and show that the region of stable members of this family is vast. Numerical examples are also presented in this study. This method is compared with several widely used solution methods by solving test...

On the long time behavior of KdV type equations

Nikolay Tzvetkov (2003/2004)

Séminaire Bourbaki

In a series of recent papers, Martel and Merle solved the long-standing open problem on the existence of blow up solutions in the energy space for the critical generalized Korteweg- de Vries equation. Martel and Merle introduced new tools to study the nonlinear dynamics close to a solitary wave solution. The aim of the talk is to discuss the main ideas developed by Martel-Merle, together with a presentation of previously known closely related results.

On the long-time behaviour of a class of parabolic SPDE’s : monotonicity methods and exchange of stability

Benjamin Bergé, Bruno Saussereau (2005)

ESAIM: Probability and Statistics

In this article we prove new results concerning the structure and the stability properties of the global attractor associated with a class of nonlinear parabolic stochastic partial differential equations driven by a standard multidimensional brownian motion. We first use monotonicity methods to prove that the random fields either stabilize exponentially rapidly with probability one around one of the two equilibrium states, or that they set out to oscillate between them. In the first case we can...

On the long-time behaviour of a class of parabolic SPDE's: monotonicity methods and exchange of stability

Benjamin Bergé, Bruno Saussereau (2010)

ESAIM: Probability and Statistics

In this article we prove new results concerning the structure and the stability properties of the global attractor associated with a class of nonlinear parabolic stochastic partial differential equations driven by a standard multidimensional Brownian motion. We first use monotonicity methods to prove that the random fields either stabilize exponentially rapidly with probability one around one of the two equilibrium states, or that they set out to oscillate between them. In the first case we can...

On the Lyapunov numbers

Sergiĭ Kolyada, Oleksandr Rybak (2013)

Colloquium Mathematicae

We introduce and study the Lyapunov numbers-quantitative measures of the sensitivity of a dynamical system (X,f) given by a compact metric space X and a continuous map f: X → X. In particular, we prove that for a minimal topologically weakly mixing system all Lyapunov numbers are the same.

On the Mathematical Modelling of Microbial Growth: Some Computational Aspects

Markov, Svetoslav (2011)

Serdica Journal of Computing

We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are...

Currently displaying 2961 – 2980 of 4754