On the Entropy of the Geodesic Flow in Manifolds Without Conjugate Points.
Given a vector field X on an algebraic variety V over ℂ, I compare the following two objects: (i) the envelope of X, the smallest algebraic pseudogroup over V whose Lie algebra contains X, and (ii) the Galois pseudogroup of the foliation defined by the vector field X + d/dt (restricted to one fibre t = constant). I show that either they are equal, or the second has codimension one in the first.
Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure . We consider the map defined on X × G by and the cocycle generated by φ. Using a characterization of the ergodic invariant measures for , we give the form of the ergodic decomposition of or more generally of the -invariant measures , where is χ∘φ-conformal for an exponential χ on G.
For several specific mappings we show their chaotic behaviour by detecting the existence of their transversal homoclinic points. Our approach has an analytical feature based on the method of Lyapunov-Schmidt.
A simpler proof of a result of Burq [1] is presented.