Displaying 281 – 300 of 490

Showing per page

On the envelope of a vector field

Bernard Malgrange (2011)

Banach Center Publications

Given a vector field X on an algebraic variety V over ℂ, I compare the following two objects: (i) the envelope of X, the smallest algebraic pseudogroup over V whose Lie algebra contains X, and (ii) the Galois pseudogroup of the foliation defined by the vector field X + d/dt (restricted to one fibre t = constant). I show that either they are equal, or the second has codimension one in the first.

On the ergodic decomposition for a cocycle

Jean-Pierre Conze, Albert Raugi (2009)

Colloquium Mathematicae

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure m G . We consider the map τ φ defined on X × G by τ φ : ( x , g ) ( τ x , φ ( x ) g ) and the cocycle ( φ ) n generated by φ. Using a characterization of the ergodic invariant measures for τ φ , we give the form of the ergodic decomposition of μ ( d x ) m G ( d g ) or more generally of the τ φ -invariant measures μ χ ( d x ) χ ( g ) m G ( d g ) , where μ χ ( d x ) is χ∘φ-conformal for an exponential χ on G.

On the existence of chaotic behaviour of diffeomorphisms

Michal Fečkan (1993)

Applications of Mathematics

For several specific mappings we show their chaotic behaviour by detecting the existence of their transversal homoclinic points. Our approach has an analytical feature based on the method of Lyapunov-Schmidt.

Currently displaying 281 – 300 of 490