The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 3261 –
3280 of
4762
Let be a continuous map with the specification property on a compact metric space . We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally...
We prove that if μₙ are probability measures on ℤ such that μ̂ₙ converges to 0 uniformly on every compact subset of (0,1), then there exists a subsequence such that the weighted ergodic averages corresponding to satisfy a pointwise ergodic theorem in L¹. We further discuss the relationship between Fourier decay and pointwise ergodic theorems for subsequences, considering in particular the averages along n² + ⌊ρ(n)⌋ for a slowly growing function ρ. Under some monotonicity assumptions, the rate...
We answer a question of H. Furstenberg on the pointwise convergence of the averages
,
where U and R are positive operators. We also study the pointwise convergence of the averages
when T and S are measure preserving transformations.
Let T be Dunford–Schwartz operator on a probability space (Ω, μ). For f∈Lp(μ), p>1, we obtain growth conditions on ‖∑k=1nTkf‖p which imply that (1/n1/p)∑k=1nTkf→0 μ-a.e. In the particular case that p=2 and T is the isometry induced by a probability preserving transformation we get better results than in the general case; these are used to obtain a quenched central limit theorem for additive functionals of stationary ergodic Markov chains, which improves those of Derriennic–Lin and Wu–Woodroofe....
In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G on (G,ρ), where ρ is the right Haar measure. We study the same kind of problem, but more generally for left actions of G on any measure space (X,μ), which leave the σ-finite measure μ relatively invariant, in the sense that sμ = Δ(s)μ for every s ∈ G, where Δ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin...
In this paper we present recent results concerning the Lichnerowicz-Poisson cohomology and the canonical homology of Poisson manifolds.
The main purpose of this paper is to suggest a method of computing Poisson cohomology of a Poisson manifold by means of symplectic groupoids. The key idea is to convert the problem of computing Poisson cohomology to that of computing de Rham cohomology of certain manifolds. In particular, we shall derive an explicit formula for the Poisson cohomology of a regular Poisson manifold where the symplectic foliation is a trivial fibration.
The notion of Poisson Lie group (sometimes called Poisson Drinfel'd group) was first introduced by Drinfel'd [1] and studied by Semenov-Tian-Shansky [7] to understand the Hamiltonian structure of the group of dressing transformations of a completely integrable system. The Poisson Lie groups play an important role in the mathematical theories of quantization and in nonlinear integrable equations. The aim of our lecture is to point out the naturality of this notion and to present basic facts about...
Examples of Poisson structures with isolated non-symplectic points are constructed from classical r-matrices.
Let be a closed surface, a compact Lie group, with Lie algebra , and a principal -bundle. In earlier work we have shown that the moduli space of central Yang-Mills connections, with reference to appropriate additional data, is stratified by smooth symplectic manifolds and that the holonomy yields a homeomorphism from onto a certain representation space , in fact a diffeomorphism, with reference to suitable smooth structures and , where denotes the universal central extension of...
For infinite measure preserving transformations with a compact regeneration property we establish a central limit theorem for visits to good sets of finite measure by points from Poissonian ensembles. This extends classical results about (noninteracting) infinite particle systems driven by Markov chains to the realm of systems driven by weakly dependent processes generated by certain measure preserving transformations.
1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple of distinct elements of R is called a cycle of f if
for i=0,1,...,k-2 and .
The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X].
It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number , depending only on the degree N of K. In this note we consider...
Currently displaying 3261 –
3280 of
4762