The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3261 – 3280 of 4762

Showing per page

Points with maximal Birkhoff average oscillation

Jinjun Li, Min Wu (2016)

Czechoslovak Mathematical Journal

Let f : X X be a continuous map with the specification property on a compact metric space X . We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally...

Pointwise convergence for subsequences of weighted averages

Patrick LaVictoire (2011)

Colloquium Mathematicae

We prove that if μₙ are probability measures on ℤ such that μ̂ₙ converges to 0 uniformly on every compact subset of (0,1), then there exists a subsequence n k such that the weighted ergodic averages corresponding to μ n k satisfy a pointwise ergodic theorem in L¹. We further discuss the relationship between Fourier decay and pointwise ergodic theorems for subsequences, considering in particular the averages along n² + ⌊ρ(n)⌋ for a slowly growing function ρ. Under some monotonicity assumptions, the rate...

Pointwise convergence of nonconventional averages

I. Assani (2005)

Colloquium Mathematicae

We answer a question of H. Furstenberg on the pointwise convergence of the averages 1 / N n = 1 N U ( f · R ( g ) ) , where U and R are positive operators. We also study the pointwise convergence of the averages 1 / N n = 1 N f ( S x ) g ( R x ) when T and S are measure preserving transformations.

Pointwise ergodic theorems with rate and application to the CLT for Markov chains

Christophe Cuny, Michael Lin (2009)

Annales de l'I.H.P. Probabilités et statistiques

Let T be Dunford–Schwartz operator on a probability space (Ω, μ). For f∈Lp(μ), p>1, we obtain growth conditions on ‖∑k=1nTkf‖p which imply that (1/n1/p)∑k=1nTkf→0 μ-a.e. In the particular case that p=2 and T is the isometry induced by a probability preserving transformation we get better results than in the general case; these are used to obtain a quenched central limit theorem for additive functionals of stationary ergodic Markov chains, which improves those of Derriennic–Lin and Wu–Woodroofe....

Pointwise limits for sequences of orbital integrals

Claire Anantharaman-Delaroche (2010)

Colloquium Mathematicae

In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G on (G,ρ), where ρ is the right Haar measure. We study the same kind of problem, but more generally for left actions of G on any measure space (X,μ), which leave the σ-finite measure μ relatively invariant, in the sense that sμ = Δ(s)μ for every s ∈ G, where Δ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin...

Pointwise representation method.

Osipov, Vladimir Mihajlovich, Osipov, Vladimir Vladimirovich (2005)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Poisson cohomology of regular Poisson manifolds

Ping Xu (1992)

Annales de l'institut Fourier

The main purpose of this paper is to suggest a method of computing Poisson cohomology of a Poisson manifold by means of symplectic groupoids. The key idea is to convert the problem of computing Poisson cohomology to that of computing de Rham cohomology of certain manifolds. In particular, we shall derive an explicit formula for the Poisson cohomology of a regular Poisson manifold where the symplectic foliation is a trivial fibration.

Poisson Lie groups and their relations to quantum groups

Janusz Grabowski (1995)

Banach Center Publications

The notion of Poisson Lie group (sometimes called Poisson Drinfel'd group) was first introduced by Drinfel'd [1] and studied by Semenov-Tian-Shansky [7] to understand the Hamiltonian structure of the group of dressing transformations of a completely integrable system. The Poisson Lie groups play an important role in the mathematical theories of quantization and in nonlinear integrable equations. The aim of our lecture is to point out the naturality of this notion and to present basic facts about...

Poisson structures on certain moduli spaces for bundles on a surface

Johannes Huebschmann (1995)

Annales de l'institut Fourier

Let Σ be a closed surface, G a compact Lie group, with Lie algebra g , and ξ : P Σ a principal G -bundle. In earlier work we have shown that the moduli space N ( ξ ) of central Yang-Mills connections, with reference to appropriate additional data, is stratified by smooth symplectic manifolds and that the holonomy yields a homeomorphism from N ( ξ ) onto a certain representation space Rep ξ ( Γ , G ) , in fact a diffeomorphism, with reference to suitable smooth structures C ( N ( ξ ) ) and C Rep ξ ( Γ , G ) , where Γ denotes the universal central extension of...

Poisson suspensions of compactly regenerative transformations

Roland Zweimüller (2008)

Colloquium Mathematicae

For infinite measure preserving transformations with a compact regeneration property we establish a central limit theorem for visits to good sets of finite measure by points from Poissonian ensembles. This extends classical results about (noninteracting) infinite particle systems driven by Markov chains to the realm of systems driven by weakly dependent processes generated by certain measure preserving transformations.

Polynomial cycles in certain local domains

T. Pezda (1994)

Acta Arithmetica

1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple x , x , . . . , x k - 1 of distinct elements of R is called a cycle of f if f ( x i ) = x i + 1 for i=0,1,...,k-2 and f ( x k - 1 ) = x . The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X]. It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number 7 7 · 2 N , depending only on the degree N of K. In this note we consider...

Currently displaying 3261 – 3280 of 4762