Rotation sets for some non-continuous maps of degree one.
For a dynamical system (X,f) and a function the rotation set is defined. The case when (X,f) is a transitive subshift of finite type and φ depends on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The rotation vectors of periodic points are dense in the rotation set. Every interior point of the rotation set is a rotation vector of an ergodic measure.
The Ruelle operator and the associated Perron-Frobenius property have been extensively studied in dynamical systems. Recently the theory has been adapted to iterated function systems (IFS) , where the ’s are contractive self-maps on a compact subset and the ’s are positive Dini functions on X [FL]. In this paper we consider Ruelle operators defined by weakly contractive IFS and nonexpansive IFS. It is known that in such cases, positive bounded eigenfunctions may not exist in general. Our theorems...
Let F be an expansive flow with the pseudo orbits tracing property on a compact metric space X. Suppose X is connected, locally connected and contains at least two distinct orbits. Then any point is a saddle.
Článek je pokračováním našich dřívějších stejnojmenných příspěvků, v nichž jsme vyšetřovali možnosti aplikace různých variant Šarkovského věty o koexistenci periodických bodů a orbit pro intervalová zobrazení na diferenciální rovnice a inkluze. I tentokrát se budeme zabývat stejným problémem, avšak pro zobrazení na kružnici. Na rozdíl od intervalových zobrazení zde totiž mj. nemusí periodické orbity implikovat existenci pevných bodů, což představuje největší překážku. Na druhé straně lze takto rozšířit...
A second-order Hamiltonian system with time recurrence is studied. The recurrence condition is weaker than almost periodicity. The existence is proven of an infinite family of solutions homoclinic to zero whose support is spread out over the real line.