The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 4221 – 4240 of 4762

Showing per page

The nonexistence of universal metric flows

Stefan Geschke (2018)

Commentationes Mathematicae Universitatis Carolinae

We consider dynamical systems of the form ( X , f ) where X is a compact metric space and f : X X is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract ω -limit sets, answering a question by Will Brian.

The number of binary rotation words

A. Frid, D. Jamet (2014)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We consider binary rotation words generated by partitions of the unit circle to two intervals and give a precise formula for the number of such words of length n. We also give the precise asymptotics for it, which happens to be Θ(n4). The result continues the line initiated by the formula for the number of all Sturmian words obtained by Lipatov [Problemy Kibernet. 39 (1982) 67–84], then independently by Mignosi [Theoret. Comput. Sci. 82 (1991) 71–84], and others.

The ODE method for some self-interacting diffusions on ℝd

Aline Kurtzmann (2010)

Annales de l'I.H.P. Probabilités et statistiques

The aim of this paper is to study the long-term behavior of a class of self-interacting diffusion processes on ℝd. These are solutions to SDEs with a drift term depending on the actual position of the process and its normalized occupation measure μt. These processes have so far been studied on compact spaces by Benaïm, Ledoux and Raimond, using stochastic approximation methods. We extend these methods to ℝd, assuming a confinement potential satisfying some conditions. These hypotheses on the confinement...

The omega limit sets of subsets in a metric space

Changming Ding (2005)

Czechoslovak Mathematical Journal

In this paper, we discuss the properties of limit sets of subsets and attractors in a compact metric space. It is shown that the ω -limit set ω ( Y ) of Y is the limit point of the sequence { ( C l Y ) · [ i , ) } i = 1 in 2 X and also a quasi-attractor is the limit point of attractors with respect to the Hausdorff metric. It is shown that if a component of an attractor is not an attractor, then it must be a real quasi-attractor.

The one-sided ergodic Hilbert transform in Banach spaces

Guy Cohen, Christophe Cuny, Michael Lin (2010)

Studia Mathematica

Let T be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform l i m n k = 1 n ( T k x ) / k . We prove that weak and strong convergence are equivalent, and in a reflexive space also s u p n | | k = 1 n ( T k x ) / k | | < is equivalent to the convergence. We also show that - k = 1 ( T k ) / k (which converges on (I-T)X) is precisely the infinitesimal generator of the semigroup ( I - T ) | ( I - T ) X ¯ r .

The period of a whirling pendulum

Hana Lichardová (2001)

Mathematica Bohemica

The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.

The Poincaré-Bendixson theorem and arational foliations on the sphere

Igor Nikolaev (1996)

Annales de l'institut Fourier

Foliations on the 2-sphere with a finite number of non-orientable singularities are considered. For this class a Poincaré-Bendixson theorem is established. In particular, the work gives an answer to a problem of H. Rosenberg concerning labyrinths.

Currently displaying 4221 – 4240 of 4762