The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 481 –
500 of
4762
In this talk, we shall look at the application of Nielsen theory to certain questions concerning the "homotopy minimum" or "homotopy stability" of periodic orbits under deformations of the dynamical system. These applications are mainly to the dynamics of surface homeomorphisms, where the geometry and algebra involved are both accessible.
A synthesis of recent development of regime-switching models based on aggregation operators is presented. It comprises procedures for model specification and identification, parameter estimation and model adequacy testing. Constructions of models for real life data from hydrology and finance are presented.
Let f: Rn x Rn → Rn be a continuous map such that f(0,λ) = 0 for all λ ∈ Rk. In this article we formulate, in terms of the Euler characteristic of algebraic sets, sufficient conditions for the existence of bifurcation points of the equation f(x,λ) = 0. Moreover we apply these results in bifurcation theory to ordinary differential equations. It is worth to point out that in the last paragraph we show how to verify, by computer, the assumptions of the theorems of this paper.
The application of Nekhoroshev theory to selected physical systems, interesting for Celestial Mechanics, is here reviewed. Applications include the stability of motions in the weakly perturbed Euler-Poinsot rigid body and the stability of the so-called Lagrangian equilibria , in the spatial circular restricted three-body problem. The difficulties to be overcome, which require a nontrivial extension of the standard Nekhoroshev theorem, are the presence of singularities in the fiber structure...
Let β ∈ (1,2) and x ∈ [0,1/(β-1)]. We call a sequence a β-expansion for x if . We call a finite sequence an n-prefix for x if it can be extended to form a β-expansion of x. In this paper we study how good an approximation is provided by the set of n-prefixes.
Given , we introduce the following subset of ℝ:
In other words, is the set of x ∈ ℝ for which there exist infinitely many solutions to the inequalities
.
When , the Borel-Cantelli lemma tells us that the Lebesgue measure of is...
In this work we will consider a class of second order perturbed Hamiltonian systems of the form , where t ∈ ℝ, q ∈ ℝⁿ, with a superquadratic growth condition on a time periodic potential V: ℝ × ℝⁿ → ℝ and a small aperiodic forcing term f: ℝ → ℝⁿ. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system is obtained...
Currently displaying 481 –
500 of
4762