The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 287

Showing per page

On approximation by Chebyshevian box splines

Zygmunt Wronicz (2002)

Annales Polonici Mathematici

Chebyshevian box splines were introduced in [5]. The purpose of this paper is to show some new properties of them in the case when the weight functions w j are of the form w j ( x ) = W j ( v n + j · x ) , where the functions W j are periodic functions of one variable. Then we consider the problem of approximation of continuous functions by Chebyshevian box splines.

On convex Bézier triangles

H. Prautzsch (1992)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

On some generalization of box splines

Zygmunt Wronicz (1999)

Annales Polonici Mathematici

We give a generalization of box splines. We prove some of their properties and we give applications to interpolation and approximation of functions.

On the boundedness of the mapping f | f | in Besov spaces

Patrick Oswald (1992)

Commentationes Mathematicae Universitatis Carolinae

For 1 p , precise conditions on the parameters are given under which the particular superposition operator T : f | f | is a bounded map in the Besov space B p , q s ( R 1 ) . The proofs rely on linear spline approximation theory.

Currently displaying 141 – 160 of 287