The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Difference functions of periodic measurable functions

Tamás Keleti (1998)

Fundamenta Mathematicae

We investigate some problems of the following type: For which sets H is it true that if f is in a given class ℱ of periodic functions and the difference functions Δ h f ( x ) = f ( x + h ) - f ( x ) are in a given smaller class G for every h ∈ H then f itself must be in G? Denoting the class of counter-example sets by ℌ(ℱ,G), that is, ( , G ) = H / : ( f G ) ( h H ) Δ h f G , we try to characterize ℌ(ℱ,G) for some interesting classes of functions ℱ ⊃ G. We study classes of measurable functions on the circle group 𝕋 = / that are invariant for changes on null-sets (e.g. measurable...

Divergence of general operators on sets of measure zero

G. A. Karagulyan (2010)

Colloquium Mathematicae

We consider sequences of linear operators Uₙ with a localization property. It is proved that for any set E of measure zero there exists a set G for which U G ( x ) diverges at each point x ∈ E. This result is a generalization of analogous theorems known for the Fourier sum operators with respect to different orthogonal systems.

Currently displaying 1 – 3 of 3

Page 1