The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
118
We present a new approach to determining supports of extreme, normed by 1, positive definite class functions of discrete groups, i.e. characters in the sense of E. Thoma [8]. Any character of a group produces a unitary representation and thus a von Neumann algebra of linear operators with finite normal trace. We use a theorem of H. Umegaki [9] on the uniqueness of conditional expectation in finite von Neumann algebras. Some applications and examples are given.
If G is a locally compact group with a compact invariant neighbourhood of the identity e, the following property (*) holds: For every continuous positive definite function h≥ 0 with compact support there is a constant such that for every continuous positive definite g≥0, where is left translation by x. In [L], property (*) was stated, but the above inequality was proved for special h only. That “for one h” implies “for all h” seemed obvious, but turned out not to be obvious at all. We fill...
We show that every abelian Polish group is the topological factor group of a closed subgroup of the full unitary group of a separable Hilbert space with the strong operator topology. It follows that all orbit equivalence relations induced by abelian Polish group actions are Borel reducible to some orbit equivalence relations induced by actions of the unitary group.
Let G be a locally compact Polish group with an invariant metric. We provide sufficient and necessary conditions for the existence of a compact set A ⊆ G and a sequence such that for all n. It is noticed that such measures μ form a meager subset of all probabilities on G in the weak measure topology. If for some k the convolution power has nontrivial absolutely continuous component then a similar characterization is obtained for any locally compact, σ-compact, unimodular, Hausdorff topological...
Let S be an abelian *-semigroup. In this paper we prove some equivalent conditions for that every positive function is a moment function on S + S + S with a unique representation measure on the set of characters of S.
We investigate positive definiteness of the Brownian kernel K(x,y) = 1/2(d(x,x₀) + d(y,x₀) - d(x,y)) on a compact group G and in particular for G = SO(n).
We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).
Currently displaying 61 –
80 of
118