Displaying 181 – 200 of 1071

Showing per page

The closure of the invertibles in a von Neumann algebra

Laura Burlando, Robin Harte (1996)

Colloquium Mathematicae

In this paper we consider a subset  of a Banach algebra A (containing all elements of A which have a generalized inverse) and characterize membership in the closure of the invertibles for the elements of Â. Thus our result yields a characterization of the closure of the invertible group for all those Banach algebras A which satisfy  = A. In particular, we prove that  = A when A is a von Neumann algebra. We also derive from our characterization new proofs of previously known results, namely Feldman...

The cofinal property of the reflexive indecomposable Banach spaces

Spiros A. Argyros, Theocharis Raikoftsalis (2012)

Annales de l’institut Fourier

It is shown that every separable reflexive Banach space is a quotient of a reflexive hereditarily indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably p -saturated space with 1 < p < and of a c 0 saturated space.

The commutators of analysis and interpolation

Cerdà, Joan (2003)

Nonlinear Analysis, Function Spaces and Applications

The boundedness properties of commutators for operators are of central importance in Mathematical Analysis, and some of these commutators arise in a natural way from interpolation theory. Our aim is to present a general abstract method to prove the boundedness of the commutator [ T , Ω ] for linear operators T and certain unbounded operators Ω that appear in interpolation theory, previously known and a priori unrelated for both real and complex interpolation methods, and also to show how the abstract result...

The compact weak topology on a Banach space.

Manuel González, Joaquín M. Gutiérrez (1990)

Extracta Mathematicae

Throughout [this paper], E and F will denote Banach spaces. The bounded weak topology on a Banach space E, noted bw(E) or simply bw, is defined as the finest topology that agrees with the weak topology on bounded sets. It is proved in [3] that bw(E) is a locally convex topology if and only if E is reflexive.In this paper we introduce the compact weak topology on a Banach space E, noted kw(E) or simply kw, as the finest topology that agrees with the weak topology on weakly compact subsets. Equivalently,...

The complemented subspace problem revisited

N. J. Kalton (2008)

Studia Mathematica

We show that if X is an infinite-dimensional Banach space in which every finite-dimensional subspace is λ-complemented with λ ≤ 2 then X is (1 + C√(λ-1))-isomorphic to a Hilbert space, where C is an absolute constant; this estimate (up to the constant C) is best possible. This answers a question of Kadets and Mityagin from 1973. We also investigate the finite-dimensional versions of the theorem.

The Complex Stone-Weierstrass Property

Kenneth Kunen (2004)

Fundamenta Mathematicae

The compact Hausdorff space X has the CSWP iff every subalgebra of C(X,ℂ) which separates points and contains the constant functions is dense in C(X,ℂ). Results of W. Rudin (1956) and Hoffman and Singer (1960) show that all scattered X have the CSWP and many non-scattered X fail the CSWP, but it was left open whether having the CSWP is just equivalent to being scattered. Here, we prove some general facts about the CSWP; in particular we show that if X is a compact ordered space,...

Currently displaying 181 – 200 of 1071