Displaying 201 – 220 of 397

Showing per page

Dilatations des commutants d'opérateurs pour des espaces de Krein de fonctions analytiques

Daniel Alpay (1989)

Annales de l'institut Fourier

Soient 𝒦 1 et 𝒦 2 deux espaces de Krein de fonctions analytiques dans le disque unité invariants pour l’opérateur de déplacement à gauche R 0 ( R 0 f ( z ) = ( f ( z ) - f ( 0 ) ) / z ) et soit A un opérateur linéaire continu de 𝒦 1 dans 𝒦 2 dont l’adjoint commute avec R 0 . Nous étudions les dilatations B de A qui conservent cette propriété de commutation et pour lesquelles les formes hermitiennes définies par I - A A * et I - B B * ont le même nombre de carrés négatifs. Nous obtenons ainsi une version du théorème de dilatation des commutants d’opérateurs dans le cadre...

Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces

Zoltán M. Balogh, Jeremy T. Tyson, Kevin Wildrick (2013)

Analysis and Geometry in Metric Spaces

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the...

Dimensional compactness in biequivalence vector spaces

J. Náter, P. Pulmann, Pavol Zlatoš (1992)

Commentationes Mathematicae Universitatis Carolinae

The notion of dimensionally compact class in a biequivalence vector space is introduced. Similarly as the notion of compactness with respect to a π -equivalence reflects our nonability to grasp any infinite set under sharp distinction of its elements, the notion of dimensional compactness is related to the fact that we are not able to measure out any infinite set of independent parameters. A fairly natural Galois connection between equivalences on an infinite set s and classes of set functions s Q ...

Diophantine approximation in Banach spaces

Lior Fishman, David Simmons, Mariusz Urbański (2014)

Journal de Théorie des Nombres de Bordeaux

In this paper, we extend the theory of simultaneous Diophantine approximation to infinite dimensions. Moreover, we discuss Dirichlet-type theorems in a very general framework and define what it means for such a theorem to be optimal. We show that optimality is implied by but does not imply the existence of badly approximable points.

Direct and Reverse Gagliardo-Nirenberg Inequalities from Logarithmic Sobolev Inequalities

Matteo Bonforte, Gabriele Grillo (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

We investigate the connection between certain logarithmic Sobolev inequalities and generalizations of Gagliardo-Nirenberg inequalities. A similar connection holds between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo-Nirenberg inequalities.

Currently displaying 201 – 220 of 397