Minimal rearrangements of Sobolev functions : a new proof
We study minimality properties of partly modified mixed Tsirelson spaces. A Banach space with a normalized basis is said to be subsequentially minimal if for every normalized block basis of , there is a further block basis of such that is equivalent to a subsequence of . Sufficient conditions are given for a partly modified mixed Tsirelson space to be subsequentially minimal, and connections with Bourgain’s ℓ¹-index are established. It is also shown that a large class of mixed Tsirelson...
We observe an infinitely dimensional Gaussian random vector x = ξ + v where ξ is a sequence of standard Gaussian variables and v ∈ l2 is an unknown mean. We consider the hypothesis testing problem H0 : v = 0versus alternatives for the sets . The sets Vε are lq-ellipsoids of semi-axes ai = i-s R/ε with lp-ellipsoid of semi-axes bi = i-r pε/ε removed or similar Besov bodies Bq,t;s (R/ε) with Besov bodies Bp,h;r (pε/ε) removed. Here or are the parameters which define the sets Vε for given radii...
This paper provides an extension of results connected with the problem of the optimization of a linear objective function subject to fuzzy relational equations and an inequality constraint, where is an operation. This research is important because the knowledge and the algorithms presented in the paper can be used in various optimization processes. Previous articles describe an important problem of minimizing a linear objective function under a fuzzy relational equation and an inequality constraint,...
We show that any convex Jordan curve in a normed plane admits an inscribed Minkowskian square. In addition we prove that no two different Minkowskian rhombi with the same direction of one diagonal can be inscribed in the same strictly convex Jordan curve.
In this survey we present two Mittag-Leffler lemmas and several applications to topics as varied as the delta-equation, Fréchet algebras, inductive limits of Banach spaces and quasi-normable Fréchet spaces.
We study mixed norm spaces that arise in connection with embeddings of Sobolev and Besov spaces. We prove Sobolev type inequalities in terms of these mixed norms. Applying these results, we obtain optimal constants in embedding theorems for anisotropic Besov spaces. This gives an extension of the estimate proved by Bourgain, Brezis and Mironescu for isotropic Besov spaces.