Displaying 261 – 280 of 437

Showing per page

Interpolation of quasicontinuous functions

Joan Cerdà, Joaquim Martín, Pilar Silvestre (2011)

Banach Center Publications

If C is a capacity on a measurable space, we prove that the restriction of the K-functional K ( t , f ; L p ( C ) , L ( C ) ) to quasicontinuous functions f ∈ QC is equivalent to K ( t , f ; L p ( C ) Q C , L ( C ) Q C ) . We apply this result to identify the interpolation space ( L p , q ( C ) Q C , L p , q ( C ) Q C ) θ , q .

Interpolation of real method spaces via some ideals of operators

Mieczysław Mastyło, Mario Milman (1999)

Studia Mathematica

Certain operator ideals are used to study interpolation of operators between spaces generated by the real method. Using orbital equivalence a new reiteration formula is proved for certain real interpolation spaces generated by ordered pairs of Banach lattices of the form ( X , L ( w ) ) . As an application we extend Ovchinnikov’s interpolation theorem from the context of classical Lions-Peetre spaces to a larger class of real interpolation spaces. A description of certain abstract J-method spaces is also presented....

Interpolation of the essential spectrum and the essential norm

A. G. Aksoy, H.-O. Tylli (2005)

Banach Center Publications

The behavior of the essential spectrum and the essential norm under (complex/real) interpolation is investigated. We extend an example of Albrecht and Müller for the spectrum by showing that in complex interpolation the essential spectrum σ e ( S [ θ ] ) of an interpolated operator is also in general a discontinuous map of the parameter θ. We discuss the logarithmic convexity (up to a multiplicative constant) of the essential norm under real interpolation, and show that this holds provided certain compact approximation...

Interpolation of the measure of non-compactness between quasi-Banach spaces.

Pedro Fernández Martínez (2006)

Revista Matemática Complutense

We study the behavior of the ball measure of non-compactness under several interpolation methods. First we deal with methods that interpolate couples of spaces, and then we proceed to extend the results to methods that interpolate finite families of spaces. We will need an approximation hypothesis on the target family of spaces.

Interpolation of the measure of non-compactness by the real method

Fernando Cobos, Pedro Fernández-Martínez, Antón Martínez (1999)

Studia Mathematica

We investigate the behaviour of the measure of non-compactness of an operator under real interpolation. Our results refer to general Banach couples. An application to the essential spectral radius of interpolated operators is also given.

Interpolation on families of characteristic functions

Michael Cwikel, Archil Gulisashvili (2000)

Studia Mathematica

We study a problem of interpolating a linear operator which is bounded on some family of characteristic functions. A new example is given of a Banach couple of function spaces for which such interpolation is possible. This couple is of the form Φ ¯ = ( B , L ) where B is an arbitrary Banach lattice of measurable functions on a σ-finite nonatomic measure space (Ω,Σ,μ). We also give an equivalent expression for the norm of a function ⨍ in the real interpolation space ( B , L ) θ , p in terms of the characteristic functions of...

Interpolation operators on the space of holomorphic functions on the unit circle

Josef Kofroň (2001)

Applications of Mathematics

The aim of the paper is to get an estimation of the error of the general interpolation rule for functions which are real valued on the interval [ - a , a ] , a ( 0 , 1 ) , have a holomorphic extension on the unit circle and are quadratic integrable on the boundary of it. The obtained estimate does not depend on the derivatives of the function to be interpolated. The optimal interpolation formula with mutually different nodes is constructed and an error estimate as well as the rate of convergence are obtained. The general...

Interpolation properties of a scale of spaces.

A. K. Lerner, L. Liflyand (2003)

Collectanea Mathematica

A scale of function spaces is considered which proved to be of considerable importance in analysis. Interpolation properties of these spaces are studied by means of the real interpolation method. The main result consists in demonstrating that this scale is interpolated in a way different from that for Lp spaces, namely, the interpolation space is not from this scale.

Interpolation sets for Fréchet measures

J. Caggiano (2000)

Colloquium Mathematicae

We introduce various classes of interpolation sets for Fréchet measures-the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.

Interpolation theorem for the p-harmonic transform

Luigi D'Onofrio, Tadeusz Iwaniec (2003)

Studia Mathematica

We establish an interpolation theorem for a class of nonlinear operators in the Lebesgue spaces s ( ) arising naturally in the study of elliptic PDEs. The prototype of those PDEs is the second order p-harmonic equation d i v | u | p - 2 u = d i v . In this example the p-harmonic transform is essentially inverse to d i v ( | | p - 2 ) . To every vector field q ( , ) our operator p assigns the gradient of the solution, p = u p ( , ) . The core of the matter is that we go beyond the natural domain of definition of this operator. Because of nonlinearity our arguments...

Currently displaying 261 – 280 of 437