Displaying 281 – 300 of 304

Showing per page

Noyau de Cauchy-Szegö d'un espace symétrique de type Cayley

Mohammed Chadli (1998)

Annales de l'institut Fourier

Dans cet article, en utilisant les algèbres de Jordan euclidiennes, nous étudions l’espace de Hardy H 2 ( Ξ ) d’un espace symétrique de type Cayley = G / H . Nous montrons que le noyau de Cauchy-Szegö de H 2 ( Ξ ) s’exprime comme somme d’une série faisant intervenir la fonction c de Harish-Chandra de l’espace symétrique riemannien D = G / K , la fonction c de l’espace symétrique c -dual 𝒩 de et les fonctions sphériques de l’espace symétrique ordonné 𝒩 . Nous établissons, dans le cas où la dimension de l’algèbre de Jordan associée...

Nuevas convergencias en G(H).

M.ª Carmen de las Obras Loscertales y Nasarre (1981)

Stochastica

Two new convergences of closed linear subspaces in the real separable Hilbert space are defined. These are the uniform strong convergence and the simultaneously strong and weak convergence to a single limit. Both convergences are characterized and it is shown that they verify the three axioms of Fréchet.

Null controllability of nonlinear convective heat equations

Sebastian Aniţa, Viorel Barbu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The internal and boundary exact null controllability of nonlinear convective heat equations with homogeneous Dirichlet boundary conditions are studied. The methods we use combine Kakutani fixed point theorem, Carleman estimates for the backward adjoint linearized system, interpolation inequalities and some estimates in the theory of parabolic boundary value problems in Lk.

Numerical Approximations of the Relative Rearrangement: The piecewise linear case. Application to some Nonlocal Problems

Jean-Michel Rakotoson, Maria Luisa Seoane (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We first prove an abstract result for a class of nonlocal problems using fixed point method. We apply this result to equations revelant from plasma physic problems. These equations contain terms like monotone or relative rearrangement of functions. So, we start the approximation study by using finite element to discretize this nonstandard quantities. We end the paper by giving a numerical resolution of a model containing those terms.

Numerical index of vector-valued function spaces

Miguel Martín, Rafael Payá (2000)

Studia Mathematica

We show that the numerical index of a c 0 -, l 1 -, or l -sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and L 1 ( μ , X ) (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.

Numerical index with respect to an operator

Mohammad Ali Ardalani (2014)

Studia Mathematica

We introduce new concepts of numerical range and numerical radius of one operator with respect to another one, which generalize in a natural way the known concepts of numerical range and numerical radius. We study basic properties of these new concepts and present some examples.

Currently displaying 281 – 300 of 304