The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 3761 –
3780 of
13226
Extensions from into (where ) are constructed in such a way that extended functions satisfy prescribed boundary conditions on the boundary of . The corresponding extension operator is linear and bounded.
G. Elliott extended the classification theory of -algebras to certain real rank zero inductive limits of subhomogeneous -algebras with one dimensional spectrum. We show that this class of -algebras is not closed under extensions. The relevant obstruction is related to the torsion subgroup of the -group. Perturbation and lifting results are provided for certain subhomogeneous -algebras.
We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.
Currently displaying 3761 –
3780 of
13226