The search session has expired. Please query the service again.

Displaying 4081 – 4100 of 13226

Showing per page

Fréchet algebras and formal power series

Graham Allan (1996)

Studia Mathematica

The class of elements of locally finite closed descent in a commutative Fréchet algebra is introduced. Using this notion, those commutative Fréchet algebras in which the algebra ℂ[[X]] may be embedded are completely characterized, and some applications to the theory of automatic continuity are given.

Fréchet algebras, formal power series, and automatic continuity

S. R. Patel (2008)

Studia Mathematica

We describe all those commutative Fréchet algebras which may be continuously embedded in the algebra ℂ[[X]] in such a way that they contain the polynomials. It is shown that these algebras (except ℂ[[X]] itself) always satisfy a certain equicontinuity condition due to Loy. Using this result, some applications to the theory of automatic continuity are given; in particular, the uniqueness of the Fréchet algebra topology for such algebras is established.

Fréchet algebras of power series

H. Garth Dales, Shital R. Patel, Charles J. Read (2010)

Banach Center Publications

We consider Fréchet algebras which are subalgebras of the algebra 𝔉 = ℂ [[X]] of formal power series in one variable and of 𝔉ₙ = ℂ [[X₁,..., Xₙ]] of formal power series in n variables, where n ∈ ℕ. In each case, these algebras are taken with the topology of coordinatewise convergence. We begin with some basic definitions about Fréchet algebras, (F)-algebras, and other topological algebras, and recall some of their properties; we discuss Michael's problem from 1952 on the continuity of characters...

Fréchet differentiability via partial Fréchet differentiability

Luděk Zajíček (2023)

Commentationes Mathematicae Universitatis Carolinae

Let X 1 , , X n be Banach spaces and f a real function on X = X 1 × × X n . Let A f be the set of all points x X at which f is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if X 1 , , X n - 1 are Asplund spaces and f is continuous (respectively Lipschitz) on X , then A f is a first category set (respectively a σ -upper porous set). We also prove that if X , Y are separable Banach spaces and f : X Y is a Lipschitz mapping, then there exists a σ -upper porous set A X such that f is Fréchet differentiable at every...

Fréchet directional differentiability and Fréchet differentiability

John R. Giles, Scott Sciffer (1996)

Commentationes Mathematicae Universitatis Carolinae

Zaj’ıček has recently shown that for a lower semi-continuous real-valued function on an Asplund space, the set of points where the function is Fréchet subdifferentiable but not Fréchet differentiable is first category. We introduce another variant of Fréchet differentiability, called Fréchet directional differentiability, and show that for any real-valued function on a normed linear space, the set of points where the function is Fréchet directionally differentiable but not Fréchet differentiable...

Fréchet interpolation spaces and Grothendieck operator ideals.

Jesús M. Fernández Castillo (1991)

Collectanea Mathematica

Starting with a continuous injection I: X → Y between Banach spaces, we are interested in the Fréchet (non Banach) space obtained as the reduced projective limit of the real interpolation spaces. We study relationships among the pertenence of I to an operator ideal and the pertenence of the given interpolation space to the Grothendieck class generated by that ideal.

Fréchet quotients of spaces of real-analytic functions

P. Domański, L. Frerick, D. Vogt (2003)

Studia Mathematica

We characterize all Fréchet quotients of the space (Ω) of (complex-valued) real-analytic functions on an arbitrary open set Ω d . We also characterize those Fréchet spaces E such that every short exact sequence of the form 0 → E → X → (Ω) → 0 splits.

Currently displaying 4081 – 4100 of 13226