The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 4561 –
4580 of
13227
The Hilbert transform on the spaces of tempered ultradistributions is defined, uniquely in the sense of hyperfunctions, as the composition of the classical Hilbert transform with the operators of multiplying and dividing a function by a certain elliptic ultrapolynomial. We show that the Hilbert transform of tempered ultradistributions defined in this way preserves important properties of the classical Hilbert transform. We also give definitions and prove properties of singular integral operators...
We introduce an alternative proof of the existence of certain Ck barrier maps, with polynomial explosion of the derivatives, on weakly pseudoconvex domains in Cn. Barriers of this sort have been constructed very recently by J. Michel and M.-C. Shaw, and have various applications. In our paper, the adaptation of Hörmander's L2 techniques to suitable vector-valued functions allows us to give a very simple approach of the problem and to improve some aspects of the result of Michel and Shaw, regarding...
A Hille-Yosida Theorem is proved on convenient vector spaces, a class, which contains all sequentially complete locally convex spaces. The approach is governed by convenient analysis and the credo that many reasonable questions concerning strongly continuous semigroups can be proved on the subspace of smooth vectors. Examples from literature are reconsidered by these simpler methods and some applications to the theory of infinite dimensional heat equations are given.
We compute the algebraic and continuous Hochschild cohomology groups of certain Fréchet algebras of analytic functions on a domain U in with coefficients in one-dimensional bimodules. Among the algebras considered, we focus on A=A(U). For this algebra, our results apply if U is smoothly bounded and strictly pseudoconvex, or if U is a product domain.
Let D be a bounded strict pseudoconvex non-smooth domain in Cn. In this paper we prove that the estimates in Lp and Lipschitz classes for the solutions of the ∂-equation with Lp-data in regular strictly pseudoconvex domains (see [2]) are also valid for D. We also give estimates of the same type for the ∂b in the regular part of the boundary of these domains.
We prove that every Sobolev function defined on a metric space coincides with a Hölder continuous function outside a set of small Hausdorff content or capacity. Moreover, the Hölder continuous function can be chosen so that it approximates the given function in the Sobolev norm. This is a generalization of a result of Malý [Ma1] to the Sobolev spaces on metric spaces [H1].
Currently displaying 4561 –
4580 of
13227