On generation and propagation of tsunamis in a shallow running ocean.
Let be a continuous unitary representation of the locally compact group on the Hilbert space . Let be the algebra generated byThe main result obtained in this paper is Theorem 1:If is -compact and then supp is discrete and each in supp in CCR.We apply this theorem to the quasiregular representation and obtain among other results that implies in many cases that is a compact coset space.
It is shown that no infinite-dimensional Banach space can have a weakly K-analytic Hamel basis. As consequences, (i) no infinite-dimensional weakly analytic separable Banach space E has a Hamel basis C-embedded in E(weak), and (ii) no infinite-dimensional Banach space has a weakly pseudocompact Hamel basis. Among other results, it is also shown that there exist noncomplete normed barrelled spaces with closed discrete Hamel bases of arbitrarily large cardinality.
In this paper we study Beurling type distributions in the Hankel setting. We consider the space of Beurling type distributions on having upper bounded support. The Hankel transform and the Hankel convolution are studied on the space . We also establish Paley Wiener type theorems for Hankel transformations of distributions in .
A characterization of topological spaces admitting a countable cover by sets of small local diameter close in spirit to known characterizations of fragmentability is obtained. It is proved that if X and Y are Hausdorff compacta such that C(X) has an equivalent p-Kadec norm and has a countable cover by sets of small local norm diameter, then has a countable cover by sets of small local norm diameter as well.