Displaying 761 – 780 of 1948

Showing per page

On Pettis integral and Radon measures

Grzegorz Plebanek (1998)

Fundamenta Mathematicae

Assuming the continuum hypothesis, we construct a universally weakly measurable function from [0,1] into a dual of some weakly compactly generated Banach space, which is not Pettis integrable. This (partially) solves a problem posed by Riddle, Saab and Uhl [13]. We prove two results related to Pettis integration in dual Banach spaces. We also contribute to the problem whether it is consistent that every bounded function which is weakly measurable with respect to some Radon measure is Pettis integrable....

On Pettis integrals with separable range

Grzegorz Plebanek (1993)

Colloquium Mathematicae

Several techniques have been developed to study Pettis integrability of weakly measurable functions with values in Banach spaces. As shown by M. Talagrand [Ta], it is fruitful to regard a weakly measurable mapping as a pointwise compact set of measurable functions - its Pettis integrability is then a purely measure-theoretic question of an appropriate continuity of a measure. On the other hand, properties of weakly measurable functions can be translated into the language of topological measure theory...

On pointwise interpolation inequalities for derivatives

Vladimir G. Maz'ya, Tatjana Olegovna Shaposhnikova (1999)

Mathematica Bohemica

Pointwise interpolation inequalities, in particular, ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m, and |Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n, where k is the gradient of order k , is the Hardy-Littlewood maximal operator, and I z is the Riesz potential of order z , are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space M ( W p m ( n ) W p l ( n ) ) is described.

On Pólya's Theorem in several complex variables

Ozan Günyüz, Vyacheslav Zakharyuta (2015)

Banach Center Publications

Let K be a compact set in ℂ, f a function analytic in ℂ̅∖K vanishing at ∞. Let f ( z ) = k = 0 a k z - k - 1 be its Taylor expansion at ∞, and H s ( f ) = d e t ( a k + l ) k , l = 0 s the sequence of Hankel determinants. The classical Pólya inequality says that l i m s u p s | H s ( f ) | 1 / s ² d ( K ) , where d(K) is the transfinite diameter of K. Goluzin has shown that for some class of compacta this inequality is sharp. We provide here a sharpness result for the multivariate analog of Pólya’s inequality, considered by the second author in Math. USSR Sbornik 25 (1975), 350-364.

On positive embeddings of C(K) spaces

Grzegorz Plebanek (2013)

Studia Mathematica

We investigate isomorphic embeddings T: C(K) → C(L) between Banach spaces of continuous functions. We show that if such an embedding T is a positive operator then K is the image of L under an upper semicontinuous set-function having finite values. Moreover we show that K has a π-base of sets whose closures are continuous images of compact subspaces of L. Our results imply in particular that if C(K) can be positively embedded into C(L) then some topological properties of L, such as countable...

On positive operator-valued continuous maps

Ryszard Grzaślewicz (1996)

Commentationes Mathematicae Universitatis Carolinae

In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that ext-ray C + ( K , ( H ) ) = { + 1 { k 0 } 𝐱 𝐱 : 𝐱 𝐒 ( H ) , k 0 is an isolated point of K } ext 𝐁 + ...

On prequojections and their duals.

M. I. Ostrovskii (1998)

Revista Matemática Complutense

The paper is devoted to the class of Fréchet spaces which are called prequojections. This class appeared in a natural way in the structure theory of Fréchet spaces. The structure of prequojections was studied by G. Metafune and V. B. Moscatelli, who also gave a survey of the subject. Answering a question of these authors we show that their result on duals of prequojections cannot be generalized from the separable case to the case of spaces of arbitrary cardinality. We also introduce a special class...

On products of some Toeplitz operators on polyanalytic Fock spaces

Irène Casseli (2020)

Czechoslovak Mathematical Journal

The purpose of this paper is to study the Sarason’s problem on Fock spaces of polyanalytic functions. Namely, given two polyanalytic symbols f and g , we establish a necessary and sufficient condition for the boundedness of some Toeplitz products T f T g ¯ subjected to certain restriction on f and g . We also characterize this property in terms of the Berezin transform.

Currently displaying 761 – 780 of 1948