Sur un théorème de Day, un théorème de Mazur-Orlicz et une généralisation de quelques théorèmes de Silverman
Étant donnés champs de vecteurs , réels, de classe dans , nous étudions l’existence de traces sur une variété de classe , de dimension , frontière d’un ouvert , des distributions telles que:
Il s’agit de représenter certains cônes réticulés par des cônes adaptés de fonctions continues sur un espace localement compact. Nous étudions le cône des opérateurs positifs majorés par un multiple de l’identité sur un cône réticulé, le représentons et donnons des conditions nécessaires et suffisantes pour qu’il soit riche (théorème d’Urysohn). Quelques illustrations sont données à la fin dans le cadre des espaces de type de Kakutani.
étant un ouvert borné de donné, on considère l’ensemble des ouverts de inclus dans , localement uniformément image de demi-espaces par des homéomorphismes bilipschitiziens. Les cartes locales sont définies sur des boules de rayon , elles sont bilipschitziennes de constante .On montre que cette famille est plus générale que celle des ouverts uniformément lipschitziens.On montre ensuite en utilisant une méthode de réflexions que pour , les espaces de Sobolev
Making use of a surface integral defined without use of the partition of unity, trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-dimensional domains with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces