Displaying 1281 – 1300 of 1948

Showing per page

On the geometry of proportional quotients of l m

Piotr Mankiewicz, Stanisław J. Szarek (2003)

Studia Mathematica

We compare various constructions of random proportional quotients of l m (i.e., with the dimension of the quotient roughly equal to a fixed proportion of m as m → ∞) and show that several of those constructions are equivalent. As a consequence of our approach we conclude that the most natural “geometric” models possess a number of asymptotically extremal properties, some of which were hitherto not known for any model.

On the global stable manifold

Alberto Abbondandolo, Pietro Majer (2006)

Studia Mathematica

We give an alternative proof of the stable manifold theorem as an application of the (right and left) inverse mapping theorem on a space of sequences. We investigate the diffeomorphism class of the global stable manifold, a problem which in the general Banach setting gives rise to subtle questions about the possibility of extending germs of diffeomorphisms.

On the Gram-Schmidt orthonormalizatons of subsystems of Schauder systems

Robert E. Zink (2002)

Colloquium Mathematicae

In one of the earliest monographs that involve the notion of a Schauder basis, Franklin showed that the Gram-Schmidt orthonormalization of a certain Schauder basis for the Banach space of functions continuous on [0,1] is again a Schauder basis for that space. Subsequently, Ciesielski observed that the Gram-Schmidt orthonormalization of any Schauder system is a Schauder basis not only for C[0,1], but also for each of the spaces L p [ 0 , 1 ] , 1 ≤ p < ∞. Although perhaps not probable, the latter result would...

On the growth of analytic semigroups along vertical lines

José Galé, Thomas Ransford (2000)

Studia Mathematica

We construct two Banach algebras, one which contains analytic semigroups ( a z ) R e z > 0 such that | a 1 + i y | arbitrarily slowly as | y | , the other which contains ones such that | a 1 + i y | arbitrarily fast

On the H -property of some Banach sequence spaces

Suthep Suantai (2003)

Archivum Mathematicum

In this paper we define a generalized Cesàro sequence space ces ( p ) and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space ces ( p ) posses property (H) and property (G), and it is rotund, where p = ( p k ) is a bounded sequence of positive real numbers with p k > 1 for all k N .

On the Hardy-type integral operators in Banach function spaces.

Elena Lomakina, Vladimir Stepanov (1998)

Publicacions Matemàtiques

Characterization of the mapping properties such as boundedness, compactness, measure of non-compactness and estimates of the approximation numbers of Hardy-type integral operators in Banach function spaces are given.

Currently displaying 1281 – 1300 of 1948